BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 20413305)

  • 1. Biofilms formed on humic substances: response to flow conditions and carbon concentrations.
    Rodrigues AL; Pereira MA; Janknecht P; Brito AG; Nogueira R
    Bioresour Technol; 2010 Sep; 101(18):6888-94. PubMed ID: 20413305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation of biofilm formation at different assimilable organic carbon concentrations under lower flow velocity condition.
    Tsai YP
    J Basic Microbiol; 2005; 45(6):475-85. PubMed ID: 16304710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The impacts of the AOC concentration on biofilm formation under higher shear force condition.
    Tsai YP; Pai TY; Qiu JM
    J Biotechnol; 2004 Jul; 111(2):155-67. PubMed ID: 15219402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of biofilm formation on a humic material.
    Rodrigues AL; Brito AG; Janknecht P; Silva J; Machado AV; Nogueira R
    J Ind Microbiol Biotechnol; 2008 Nov; 35(11):1269-76. PubMed ID: 18712549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of hydrodynamic conditions on biofilm behavior in a methanogenic inverse turbulent bed reactor.
    Michaud S; Bernet N; Roustan M; Delgenès JP
    Biotechnol Prog; 2003; 19(3):858-63. PubMed ID: 12790650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of humic substances in regrowth.
    Camper AK
    Int J Food Microbiol; 2004 May; 92(3):355-64. PubMed ID: 15145594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of size distribution and areal cell density of ammonia-oxidizing bacterial microcolonies in relation to substrate microprofiles in biofilms.
    Okabe S; Kindaichi T; Ito T; Satoh H
    Biotechnol Bioeng; 2004 Jan; 85(1):86-95. PubMed ID: 14705015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artificial groundwater treatment: biofilm activity and organic carbon removal performance.
    Långmark J; Storey MV; Ashbolt NJ; Stenström TA
    Water Res; 2004 Feb; 38(3):740-8. PubMed ID: 14723944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Response to mixed substrate feeds of the structure and activity of a linuron-degrading triple-species biofilm.
    Breugelmans P; Horemans B; Hofkens J; Springael D
    Res Microbiol; 2010 Oct; 161(8):660-6. PubMed ID: 20600856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and on-site formation of biofilms in paper machine water flow.
    Mattila K; Weber A; Salkinoja-Salonen MS
    J Ind Microbiol Biotechnol; 2002 May; 28(5):268-79. PubMed ID: 11986931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of chlorine, biodegradable dissolved organic carbon and suspended bacteria on biofilm development in drinking water systems.
    Codony F; Morato J; Ribas F; Mas J
    J Basic Microbiol; 2002; 42(5):311-9. PubMed ID: 12362402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Internal and external mass transfer in biofilms grown at various flow velocities.
    Beyenal H; Lewandowski Z
    Biotechnol Prog; 2002; 18(1):55-61. PubMed ID: 11822900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biofilm morphology as related to the porous media clogging.
    Kim JW; Choi H; Pachepsky YA
    Water Res; 2010 Feb; 44(4):1193-201. PubMed ID: 19604533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of fluid shear on the structure and material properties of sulphate-reducing bacterial biofilms.
    Dunsmore BC; Jacobsen A; Hall-Stoodley L; Bass CJ; Lappin-Scott HM; Stoodley P
    J Ind Microbiol Biotechnol; 2002 Dec; 29(6):347-53. PubMed ID: 12483477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sulfate-reducing bacterial community structure and their contribution to carbon mineralization in a wastewater biofilm growing under microaerophilic conditions.
    Okabe S; Ito T; Satoh H
    Appl Microbiol Biotechnol; 2003 Dec; 63(3):322-34. PubMed ID: 12879306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of carbon and oxygen limitations and calcium concentrations on biofilm removal processes.
    Applegate DH; Bryers JD
    Biotechnol Bioeng; 1991 Jan; 37(1):17-25. PubMed ID: 18597303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measuring local flow velocities and biofilm structure in biofilm systems with magnetic resonance imaging (MRI).
    Manz B; Volke F; Goll D; Horn H
    Biotechnol Bioeng; 2003 Nov; 84(4):424-32. PubMed ID: 14574699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Architectural adaptation and protein expression patterns of Salmonella enterica serovar Enteritidis biofilms under laminar flow conditions.
    Mangalappalli-Illathu AK; Lawrence JR; Swerhone GD; Korber DR
    Int J Food Microbiol; 2008 Mar; 123(1-2):109-20. PubMed ID: 18261816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacterial community composition and structure of biofilms developing on nanofiltration membranes applied to wastewater treatment.
    Ivnitsky H; Katz I; Minz D; Volvovic G; Shimoni E; Kesselman E; Semiat R; Dosoretz CG
    Water Res; 2007 Sep; 41(17):3924-35. PubMed ID: 17585989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of flow velocity on the distribution and composition of extracellular polymeric substances in biofilms and the detachment mechanism of biofilms.
    Wang C; Miao L; Hou J; Wang P; Qian J; Dai S
    Water Sci Technol; 2014; 69(4):825-32. PubMed ID: 24569283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.