These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
70 related articles for article (PubMed ID: 20413305)
1. Biofilms formed on humic substances: response to flow conditions and carbon concentrations. Rodrigues AL; Pereira MA; Janknecht P; Brito AG; Nogueira R Bioresour Technol; 2010 Sep; 101(18):6888-94. PubMed ID: 20413305 [TBL] [Abstract][Full Text] [Related]
2. Simulation of biofilm formation at different assimilable organic carbon concentrations under lower flow velocity condition. Tsai YP J Basic Microbiol; 2005; 45(6):475-85. PubMed ID: 16304710 [TBL] [Abstract][Full Text] [Related]
3. The impacts of the AOC concentration on biofilm formation under higher shear force condition. Tsai YP; Pai TY; Qiu JM J Biotechnol; 2004 Jul; 111(2):155-67. PubMed ID: 15219402 [TBL] [Abstract][Full Text] [Related]
4. Characterization of biofilm formation on a humic material. Rodrigues AL; Brito AG; Janknecht P; Silva J; Machado AV; Nogueira R J Ind Microbiol Biotechnol; 2008 Nov; 35(11):1269-76. PubMed ID: 18712549 [TBL] [Abstract][Full Text] [Related]
5. Influence of hydrodynamic conditions on biofilm behavior in a methanogenic inverse turbulent bed reactor. Michaud S; Bernet N; Roustan M; Delgenès JP Biotechnol Prog; 2003; 19(3):858-63. PubMed ID: 12790650 [TBL] [Abstract][Full Text] [Related]
6. Involvement of humic substances in regrowth. Camper AK Int J Food Microbiol; 2004 May; 92(3):355-64. PubMed ID: 15145594 [TBL] [Abstract][Full Text] [Related]
7. Analysis of size distribution and areal cell density of ammonia-oxidizing bacterial microcolonies in relation to substrate microprofiles in biofilms. Okabe S; Kindaichi T; Ito T; Satoh H Biotechnol Bioeng; 2004 Jan; 85(1):86-95. PubMed ID: 14705015 [TBL] [Abstract][Full Text] [Related]
9. Response to mixed substrate feeds of the structure and activity of a linuron-degrading triple-species biofilm. Breugelmans P; Horemans B; Hofkens J; Springael D Res Microbiol; 2010 Oct; 161(8):660-6. PubMed ID: 20600856 [TBL] [Abstract][Full Text] [Related]
10. Structure and on-site formation of biofilms in paper machine water flow. Mattila K; Weber A; Salkinoja-Salonen MS J Ind Microbiol Biotechnol; 2002 May; 28(5):268-79. PubMed ID: 11986931 [TBL] [Abstract][Full Text] [Related]
11. Effect of chlorine, biodegradable dissolved organic carbon and suspended bacteria on biofilm development in drinking water systems. Codony F; Morato J; Ribas F; Mas J J Basic Microbiol; 2002; 42(5):311-9. PubMed ID: 12362402 [TBL] [Abstract][Full Text] [Related]
12. Internal and external mass transfer in biofilms grown at various flow velocities. Beyenal H; Lewandowski Z Biotechnol Prog; 2002; 18(1):55-61. PubMed ID: 11822900 [TBL] [Abstract][Full Text] [Related]
13. Biofilm morphology as related to the porous media clogging. Kim JW; Choi H; Pachepsky YA Water Res; 2010 Feb; 44(4):1193-201. PubMed ID: 19604533 [TBL] [Abstract][Full Text] [Related]
14. The influence of fluid shear on the structure and material properties of sulphate-reducing bacterial biofilms. Dunsmore BC; Jacobsen A; Hall-Stoodley L; Bass CJ; Lappin-Scott HM; Stoodley P J Ind Microbiol Biotechnol; 2002 Dec; 29(6):347-53. PubMed ID: 12483477 [TBL] [Abstract][Full Text] [Related]
15. Sulfate-reducing bacterial community structure and their contribution to carbon mineralization in a wastewater biofilm growing under microaerophilic conditions. Okabe S; Ito T; Satoh H Appl Microbiol Biotechnol; 2003 Dec; 63(3):322-34. PubMed ID: 12879306 [TBL] [Abstract][Full Text] [Related]
16. Effects of carbon and oxygen limitations and calcium concentrations on biofilm removal processes. Applegate DH; Bryers JD Biotechnol Bioeng; 1991 Jan; 37(1):17-25. PubMed ID: 18597303 [TBL] [Abstract][Full Text] [Related]
17. Measuring local flow velocities and biofilm structure in biofilm systems with magnetic resonance imaging (MRI). Manz B; Volke F; Goll D; Horn H Biotechnol Bioeng; 2003 Nov; 84(4):424-32. PubMed ID: 14574699 [TBL] [Abstract][Full Text] [Related]
18. Architectural adaptation and protein expression patterns of Salmonella enterica serovar Enteritidis biofilms under laminar flow conditions. Mangalappalli-Illathu AK; Lawrence JR; Swerhone GD; Korber DR Int J Food Microbiol; 2008 Mar; 123(1-2):109-20. PubMed ID: 18261816 [TBL] [Abstract][Full Text] [Related]
19. Bacterial community composition and structure of biofilms developing on nanofiltration membranes applied to wastewater treatment. Ivnitsky H; Katz I; Minz D; Volvovic G; Shimoni E; Kesselman E; Semiat R; Dosoretz CG Water Res; 2007 Sep; 41(17):3924-35. PubMed ID: 17585989 [TBL] [Abstract][Full Text] [Related]
20. The effect of flow velocity on the distribution and composition of extracellular polymeric substances in biofilms and the detachment mechanism of biofilms. Wang C; Miao L; Hou J; Wang P; Qian J; Dai S Water Sci Technol; 2014; 69(4):825-32. PubMed ID: 24569283 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]