BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 20413665)

  • 1. Role of GATA-1s in early hematopoiesis and differences between alternative splicing in human and murine GATA-1.
    Halsey C; Tunstall O; Gibson B; Roberts I; Graham G
    Blood; 2010 Apr; 115(16):3415-6. PubMed ID: 20413665
    [No Abstract]   [Full Text] [Related]  

  • 2. Controlling hematopoiesis through sumoylation-dependent regulation of a GATA factor.
    Lee HY; Johnson KD; Fujiwara T; Boyer ME; Kim SI; Bresnick EH
    Mol Cell; 2009 Dec; 36(6):984-95. PubMed ID: 20064464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcription factor GATA-1 and Down syndrome leukemogenesis.
    Muntean AG; Ge Y; Taub JW; Crispino JD
    Leuk Lymphoma; 2006 Jun; 47(6):986-97. PubMed ID: 16840187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An inherited mutation leading to production of only the short isoform of GATA-1 is associated with impaired erythropoiesis.
    Hollanda LM; Lima CS; Cunha AF; Albuquerque DM; Vassallo J; Ozelo MC; Joazeiro PP; Saad ST; Costa FF
    Nat Genet; 2006 Jul; 38(7):807-12. PubMed ID: 16783379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acetylation and MAPK phosphorylation cooperate to regulate the degradation of active GATA-1.
    Hernandez-Hernandez A; Ray P; Litos G; Ciro M; Ottolenghi S; Beug H; Boyes J
    EMBO J; 2006 Jul; 25(14):3264-74. PubMed ID: 16858405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impaired human hematopoiesis due to a cryptic intronic
    Abdulhay NJ; Fiorini C; Verboon JM; Ludwig LS; Ulirsch JC; Zieger B; Lareau CA; Mi X; Roy A; Obeng EA; Erlacher M; Gupta N; Gabriel SB; Ebert BL; Niemeyer CM; Khoriaty RN; Ancliff P; Gazda HT; Wlodarski MW; Sankaran VG
    J Exp Med; 2019 May; 216(5):1050-1060. PubMed ID: 30914438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inherited thrombocytopenia due to GATA-1 mutations.
    Millikan PD; Balamohan SM; Raskind WH; Kacena MA
    Semin Thromb Hemost; 2011 Sep; 37(6):682-9. PubMed ID: 22102271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Child With Dyserythropoietic Anemia and Megakaryocyte Dysplasia Due to a Novel 5'UTR GATA1s Splice Mutation.
    Zucker J; Temm C; Czader M; Nalepa G
    Pediatr Blood Cancer; 2016 May; 63(5):917-21. PubMed ID: 26713410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GATA-related hematologic disorders.
    Shimizu R; Yamamoto M
    Exp Hematol; 2016 Aug; 44(8):696-705. PubMed ID: 27235756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GATA factor mutations in hematologic disease.
    Crispino JD; Horwitz MS
    Blood; 2017 Apr; 129(15):2103-2110. PubMed ID: 28179280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of hematopoietic GATA transcription factor expression in mouse and human dendritic cells.
    Scheenstra MR; Salunkhe V; De Cuyper IM; Hoogenboezem M; Li E; Kuijpers TW; van den Berg TK; GutiƩrrez L
    Blood Cells Mol Dis; 2015 Dec; 55(4):293-303. PubMed ID: 26460250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of a functional ZBP-89 binding site that mediates Gata1 gene expression during hematopoietic development.
    Ohneda K; Ohmori S; Ishijima Y; Nakano M; Yamamoto M
    J Biol Chem; 2009 Oct; 284(44):30187-99. PubMed ID: 19723625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of GATA-1 in normal and neoplastic hemopoiesis.
    Migliaccio AR; Rana RA; Vannucchi AM; Manzoli FA
    Ann N Y Acad Sci; 2005 Jun; 1044():142-58. PubMed ID: 15958708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential GATA factor stabilities: implications for chromatin occupancy by structurally similar transcription factors.
    Lurie LJ; Boyer ME; Grass JA; Bresnick EH
    Biochemistry; 2008 Jan; 47(3):859-69. PubMed ID: 18154321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autophagy driven by a master regulator of hematopoiesis.
    Kang YA; Sanalkumar R; O'Geen H; Linnemann AK; Chang CJ; Bouhassira EE; Farnham PJ; Keles S; Bresnick EH
    Mol Cell Biol; 2012 Jan; 32(1):226-39. PubMed ID: 22025678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NuRD mediates activating and repressive functions of GATA-1 and FOG-1 during blood development.
    Miccio A; Wang Y; Hong W; Gregory GD; Wang H; Yu X; Choi JK; Shelat S; Tong W; Poncz M; Blobel GA
    EMBO J; 2010 Jan; 29(2):442-56. PubMed ID: 19927129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of GATA-1 in a non-hematopoietic cell line induces beta-globin locus control region chromatin structure remodeling and an erythroid pattern of gene expression.
    Layon ME; Ackley CJ; West RJ; Lowrey CH
    J Mol Biol; 2007 Feb; 366(3):737-44. PubMed ID: 17196618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GATA-1 isoforms differently contribute to the production and compartmentation of reactive oxygen species in the myeloid leukemia cell line K562.
    Riccio P; Sessa R; de Nicola S; Petruzziello F; Trombetti S; Menna G; Pepe G; Maddalena P; Izzo P; Grosso M
    J Cell Physiol; 2019 Nov; 234(11):20829-20846. PubMed ID: 31049966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GATA-1-mediated transcriptional repression yields persistent transcription factor IIB-chromatin complexes.
    Martowicz ML; Grass JA; Bresnick EH
    J Biol Chem; 2006 Dec; 281(49):37345-52. PubMed ID: 16963445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinct functions of dispersed GATA factor complexes at an endogenous gene locus.
    Grass JA; Jing H; Kim SI; Martowicz ML; Pal S; Blobel GA; Bresnick EH
    Mol Cell Biol; 2006 Oct; 26(19):7056-67. PubMed ID: 16980610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.