These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 20414699)

  • 1. Rapid prediction of solvation free energy. 3. Application to the SAMPL2 challenge.
    Purisima EO; Corbeil CR; Sulea T
    J Comput Aided Mol Des; 2010 Apr; 24(4):373-83. PubMed ID: 20414699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid Prediction of Solvation Free Energy. 1. An Extensive Test of Linear Interaction Energy (LIE).
    Sulea T; Corbeil CR; Purisima EO
    J Chem Theory Comput; 2010 May; 6(5):1608-21. PubMed ID: 26615694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting hydration free energies of polychlorinated aromatic compounds from the SAMPL-3 data set with FiSH and LIE models.
    Sulea T; Purisima EO
    J Comput Aided Mol Des; 2012 May; 26(5):661-7. PubMed ID: 22190141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predictions of hydration free energies from continuum solvent with solute polarizable models: the SAMPL2 blind challenge.
    Meunier A; Truchon JF
    J Comput Aided Mol Des; 2010 Apr; 24(4):361-72. PubMed ID: 20354893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of SAMPL2 aqueous solvation free energies and tautomeric ratios using the SM8, SM8AD, and SMD solvation models.
    Ribeiro RF; Marenich AV; Cramer CJ; Truhlar DG
    J Comput Aided Mol Des; 2010 Apr; 24(4):317-33. PubMed ID: 20358259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting hydration free energies with chemical accuracy: the SAMPL4 challenge.
    Sandberg L
    J Comput Aided Mol Des; 2014 Mar; 28(3):211-9. PubMed ID: 24550133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance of the IEF-MST solvation continuum model in the SAMPL2 blind test prediction of hydration and tautomerization free energies.
    Soteras I; Orozco M; Luque FJ
    J Comput Aided Mol Des; 2010 Apr; 24(4):281-91. PubMed ID: 20300801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of SAMPL-1 hydration free energies using a continuum electrostatics-dispersion model.
    Sulea T; Wanapun D; Dennis S; Purisima EO
    J Phys Chem B; 2009 Apr; 113(14):4511-20. PubMed ID: 19267492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid Prediction of Solvation Free Energy. 2. The First-Shell Hydration (FiSH) Continuum Model.
    Corbeil CR; Sulea T; Purisima EO
    J Chem Theory Comput; 2010 May; 6(5):1622-37. PubMed ID: 26615695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate predictions of nonpolar solvation free energies require explicit consideration of binding-site hydration.
    Genheden S; Mikulskis P; Hu L; Kongsted J; Söderhjelm P; Ryde U
    J Am Chem Soc; 2011 Aug; 133(33):13081-92. PubMed ID: 21728337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extended solvent-contact model approach to SAMPL4 blind prediction challenge for hydration free energies.
    Park H
    J Comput Aided Mol Des; 2014 Mar; 28(3):175-86. PubMed ID: 24554191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blind prediction test of free energies of hydration with COSMO-RS.
    Klamt A; Diedenhofen M
    J Comput Aided Mol Des; 2010 Apr; 24(4):357-60. PubMed ID: 20383653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuum solvation models in the linear interaction energy method.
    Carlsson J; Andér M; Nervall M; Aqvist J
    J Phys Chem B; 2006 Jun; 110(24):12034-41. PubMed ID: 16800513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting hydration free energies using all-atom molecular dynamics simulations and multiple starting conformations.
    Klimovich PV; Mobley DL
    J Comput Aided Mol Des; 2010 Apr; 24(4):307-16. PubMed ID: 20372973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions.
    Marenich AV; Cramer CJ; Truhlar DG
    J Phys Chem B; 2009 May; 113(18):6378-96. PubMed ID: 19366259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting hydration free energies with a hybrid QM/MM approach: an evaluation of implicit and explicit solvation models in SAMPL4.
    König G; Pickard FC; Mei Y; Brooks BR
    J Comput Aided Mol Des; 2014 Mar; 28(3):245-57. PubMed ID: 24504703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calculation of the solvation free energy of neutral and ionic molecules in diverse solvents.
    Lee S; Cho KH; Lee CJ; Kim GE; Na CH; In Y; No KT
    J Chem Inf Model; 2011 Jan; 51(1):105-14. PubMed ID: 21133372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance of SM8 on a test to predict small-molecule solvation free energies.
    Chamberlin AC; Cramer CJ; Truhlar DG
    J Phys Chem B; 2008 Jul; 112(29):8651-5. PubMed ID: 18582013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast prediction of hydration free energies for SAMPL4 blind test from a classical density functional theory.
    Fu J; Liu Y; Wu J
    J Comput Aided Mol Des; 2014 Mar; 28(3):299-304. PubMed ID: 24622881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Weighted-density functionals for cavity formation and dispersion energies in continuum solvation models.
    Sundararaman R; Gunceler D; Arias TA
    J Chem Phys; 2014 Oct; 141(13):134105. PubMed ID: 25296782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.