BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 20414734)

  • 1. Development of a real-time tactile sensing system for brain tumor diagnosis.
    Tanaka Y; Yu Q; Doumoto K; Sano A; Hayashi Y; Fujii M; Kajita Y; Mizuno M; Wakabayashi T; Fujimoto H
    Int J Comput Assist Radiol Surg; 2010 Jul; 5(4):359-67. PubMed ID: 20414734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Piezoelectric self-sensing system for tactile intraoperative brain tumor delineation in neurosurgery.
    Uribe DO; Stroop R; Wallaschek J
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():737-40. PubMed ID: 19963471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A review of force and resonance sensors used in the clinical study of tissue properties.
    Yousuf MA; Asiyanbola BA
    Proc Inst Mech Eng H; 2013 Dec; 227(12):1333-40. PubMed ID: 24048077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A piezoresistive tactile sensor for tissue characterization during catheter-based cardiac surgery.
    Kalantari M; Ramezanifard M; Ahmadi R; Dargahi J; Kövecses J
    Int J Med Robot; 2011 Dec; 7(4):431-40. PubMed ID: 21976393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Innovative optical microsystem for static and dynamic tissue diagnosis in minimally invasive surgical operations.
    Ahmadi R; Packirisamy M; Dargahi J
    J Biomed Opt; 2012 Aug; 17(8):081416. PubMed ID: 23224177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetic resonance imaging-compatible tactile sensing device based on a piezoelectric array.
    Hamed A; Masamune K; Tse ZT; Lamperth M; Dohi T
    Proc Inst Mech Eng H; 2012 Jul; 226(7):565-75. PubMed ID: 22913103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical palpation: optical coherence tomography-based tactile imaging using a compliant sensor.
    Kennedy KM; Es'haghian S; Chin L; McLaughlin RA; Sampson DD; Kennedy BF
    Opt Lett; 2014 May; 39(10):3014-7. PubMed ID: 24978261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tactile sensor-based real-time clustering for tissue differentiation.
    Stroop R; Nakamura M; Schoukens J; Oliva Uribe D
    Int J Comput Assist Radiol Surg; 2019 Jan; 14(1):129-137. PubMed ID: 30293172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical Micro/Nanofiber-Enabled Compact Tactile Sensor for Hardness Discrimination.
    Tang Y; Liu H; Pan J; Zhang Z; Xu Y; Yao N; Zhang L; Tong L
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):4560-4566. PubMed ID: 33435667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Applying tactile sensing with piezoelectric materials for minimally invasive surgery and magnetic-resonance-guided interventions.
    Hamed AM; Tse ZT; Young I; Davies BL; Lampérth M
    Proc Inst Mech Eng H; 2009 Jan; 223(1):99-110. PubMed ID: 19239071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perception-based 3D tactile rendering from a single image for human skin examinations by dynamic touch.
    Kim K; Lee S
    Skin Res Technol; 2015 May; 21(2):164-74. PubMed ID: 25087469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vision-based fluid-type tactile sensor for measurements on biological tissues.
    Kim Y; Obinata G; Kawk B; Jung J; Lee S
    Med Biol Eng Comput; 2018 Feb; 56(2):297-305. PubMed ID: 28714049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated automated nanomanipulation and real-time cellular surface imaging for mechanical properties characterization.
    Eslami S; Zareian R; Jalili N
    Rev Sci Instrum; 2012 Oct; 83(10):105002. PubMed ID: 23126795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel MEMS stiffness sensor for in-vivo tissue characterization measurement.
    Peng P; Sezen AS; Rajamani R; Erdman AG
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6640-3. PubMed ID: 19963926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Softness sensing probe with multiple acoustic paths for laparoscopic surgery.
    Ukai T; Tanaka Y; Fukuda T; Kajikawa T; Miura H; Terada Y
    Int J Comput Assist Radiol Surg; 2020 Sep; 15(9):1537-1547. PubMed ID: 32514729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Artificial tactile sensing in minimally invasive surgery - a new technical approach.
    Schostek S; Ho CN; Kalanovic D; Schurr MO
    Minim Invasive Ther Allied Technol; 2006; 15(5):296-304. PubMed ID: 17062404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A tactile sensor translating texture and sliding motion information into electrical pulses.
    Liao Z; Liu W; Wu Y; Zhang C; Zhang Y; Wang X; Li X
    Nanoscale; 2015 Jun; 7(24):10801-6. PubMed ID: 26036597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Elastic modulus measured by spherical indentation used toward the clinical application of the brain stiffness].
    Nagai H; Takada D; Kambara M; Hagiwara S; Daisu M; Miyazaki T; Akiyama Y
    Brain Nerve; 2013 Jan; 65(1):85-92. PubMed ID: 23300106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-Indenter Device for in Vivo Biomechanical Tissue Measurement.
    Petron A; Duval JF; Herr H
    IEEE Trans Neural Syst Rehabil Eng; 2017 May; 25(5):426-435. PubMed ID: 27244744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micromechanical properties of hydrogels measured with MEMS resonant sensors.
    Corbin EA; Millet LJ; Pikul JH; Johnson CL; Georgiadis JG; King WP; Bashir R
    Biomed Microdevices; 2013 Apr; 15(2):311-9. PubMed ID: 23247581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.