BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 20414907)

  • 21. Scatter correction of transmission near-infrared spectra by photon migration data: quantitative analysis of solids.
    Abrahamsson C; Löwgren A; Strömdahl B; Svensson T; Andersson-Engels S; Johansson J; Folestad S
    Appl Spectrosc; 2005 Nov; 59(11):1381-7. PubMed ID: 16316516
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Noise perturbation in functional principal component analysis filtering for two-dimensional correlation spectroscopy: its theory and application to infrared spectra of a poly(3-hydroxybutyrate) thin film.
    Hu Y; Li B; Sato H; Noda I; Ozaki Y
    J Phys Chem A; 2006 Oct; 110(39):11279-90. PubMed ID: 17004737
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimizing Savitzky-Golay parameters for improving spectral resolution and quantification in infrared spectroscopy.
    Zimmermann B; Kohler A
    Appl Spectrosc; 2013 Aug; 67(8):892-902. PubMed ID: 23876728
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Utilization of spectral vector properties in multivariate chemometrics analysis of hyperspectral infrared imaging data for cellular studies.
    Tan ST; Chen K; Ong S; Chew W
    Analyst; 2008 Oct; 133(10):1395-408. PubMed ID: 18810288
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High throughput absorbance spectra of cancerous cells: a microscopic investigation of spectral artifacts.
    Mignolet A; Goormaghtigh E
    Analyst; 2015 Apr; 140(7):2393-401. PubMed ID: 25569691
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Single point vs. mapping approach for spectral cytopathology (SCP).
    Schubert JM; Mazur AI; Bird B; Miljković M; Diem M
    J Biophotonics; 2010 Aug; 3(8-9):588-96. PubMed ID: 20449833
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Background correction in near-infrared spectra of plant extracts by orthogonal signal correction.
    Qu HB; Ou DL; Cheng YY
    J Zhejiang Univ Sci B; 2005 Aug; 6(8):838-43. PubMed ID: 16052720
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fringes in FTIR spectroscopy revisited: understanding and modelling fringes in infrared spectroscopy of thin films.
    Konevskikh T; Ponossov A; Blümel R; Lukacs R; Kohler A
    Analyst; 2015 Jun; 140(12):3969-80. PubMed ID: 25893226
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reducing inter-replicate variation in fourier transform infrared spectroscopy by extended multiplicative signal correction.
    Kohler A; Böcker U; Warringer J; Blomberg A; Omholt SW; Stark E; Martens H
    Appl Spectrosc; 2009 Mar; 63(3):296-305. PubMed ID: 19281645
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Research on the background correction in the non-invasive sensing of glucose by near-infrared spectroscopy].
    Liu R; Gu XY; Xu KX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Aug; 28(8):1772-5. PubMed ID: 18975800
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Proton dynamics in the strong chelate hydrogen bond of crystalline picolinic acid N-oxide. A new computational approach and infrared, raman and INS study.
    Stare J; Panek J; Eckert J; Grdadolnik J; Mavri J; Hadzi D
    J Phys Chem A; 2008 Feb; 112(7):1576-86. PubMed ID: 18225869
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multivariate curve resolution applied to infrared reflection measurements of soil contaminated with an organophosphorus analyte.
    Gallagher NB; Blake TA; Gassman PL; Shaver JM; Windig W
    Appl Spectrosc; 2006 Jul; 60(7):713-22. PubMed ID: 16854257
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effect of deformation of absorbing scatterers on Mie-type signatures in infrared microspectroscopy.
    Brandsrud MA; Blümel R; Solheim JH; Kohler A
    Sci Rep; 2021 Feb; 11(1):4675. PubMed ID: 33633244
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adding synchrotron radiation to infrared microspectroscopy: what's new in biomedical applications?
    Dumas P; Sockalingum GD; Sulé-Suso J
    Trends Biotechnol; 2007 Jan; 25(1):40-4. PubMed ID: 17116340
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An automated approach for fringe frequency estimation and removal in infrared spectroscopy and hyperspectral imaging of biological samples.
    Solheim JH; Borondics F; Zimmermann B; Sandt C; Muthreich F; Kohler A
    J Biophotonics; 2021 Dec; 14(12):e202100148. PubMed ID: 34468082
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantitative classification of two-dimensional correlation spectra.
    Chen J; Zhou Q; Noda I; Sun S
    Appl Spectrosc; 2009 Aug; 63(8):920-5. PubMed ID: 19678989
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Extended multiplicative signal correction and spectral interference subtraction: new preprocessing methods for near infrared spectroscopy.
    Martens H; Stark E
    J Pharm Biomed Anal; 1991; 9(8):625-35. PubMed ID: 1790182
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Scattering and absorption effects in the determination of glucose in whole blood by near-infrared spectroscopy.
    Amerov AK; Chen J; Small GW; Arnold MA
    Anal Chem; 2005 Jul; 77(14):4587-94. PubMed ID: 16013877
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Scattering correction for samples with cylindrical domains measured with polarized infrared spectroscopy.
    Koziol P; Kosowska K; Korecki P; Wrobel TP
    Anal Chim Acta; 2023 Oct; 1278():341722. PubMed ID: 37709463
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mid-infrared near-field spectroscopy.
    Amarie S; Ganz T; Keilmann F
    Opt Express; 2009 Nov; 17(24):21794-801. PubMed ID: 19997423
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.