These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 20416314)
1. Geographic differences on accumulation of sugars and polyols in locust eggs in response to cold acclimation. Wang XH; Qi XL; Kang L J Insect Physiol; 2010 Aug; 56(8):966-70. PubMed ID: 20416314 [TBL] [Abstract][Full Text] [Related]
2. RELATIONSHIP BETWEEN SUPERCOOLING CAPABILITY AND CRYOPROTECTANT CONTENT IN EGGS OF PARARCYPTERA MICROPTERA MERIDIONALIS (ORTHOPTERA: ACRYPTERIDAE). Zhou XR; Li YY; Li N; Pang BP Cryo Letters; 2015; 36(4):270-7. PubMed ID: 26576002 [TBL] [Abstract][Full Text] [Related]
3. Thermoperiodic acclimations enhance cold hardiness of the eggs of the migratory locust. Wang HS; Zhou CS; Guo W; Kang L Cryobiology; 2006 Oct; 53(2):206-17. PubMed ID: 16876151 [TBL] [Abstract][Full Text] [Related]
4. Cold exposure and associated metabolic changes in adult tropical beetles exposed to fluctuating thermal regimes. Lalouette L; Kostál V; Colinet H; Gagneul D; Renault D FEBS J; 2007 Apr; 274(7):1759-67. PubMed ID: 17331186 [TBL] [Abstract][Full Text] [Related]
5. Physiological characteristics and cold tolerance of overwintering eggs in Gomphocerus sibiricus L. (Orthoptera: Acrididae). Song Y; Huang WW; Zhou Y; Li ZW; Ji R; Ye XF Arch Insect Biochem Physiol; 2021 Dec; 108(4):e21846. PubMed ID: 34632624 [TBL] [Abstract][Full Text] [Related]
6. Effect of cooling rates on the cold hardiness and cryoprotectant profiles of locust eggs. Wang HS; Kang L Cryobiology; 2005 Oct; 51(2):220-9. PubMed ID: 16115620 [TBL] [Abstract][Full Text] [Related]
7. Differences in egg thermotolerance between tropical and temperate populations of the migratory locust Locusta migratoria (Orthoptera: Acridiidae). Wang XH; Kang L J Insect Physiol; 2005 Nov; 51(11):1277-85. PubMed ID: 16169005 [TBL] [Abstract][Full Text] [Related]
8. Multiple component system of sugars and polyols in the overwintering spruce bark beetle, Ips typographus. Kostál V; Zahradnícková H; Simek P; Zelený J J Insect Physiol; 2007 Jun; 53(6):580-6. PubMed ID: 17481650 [TBL] [Abstract][Full Text] [Related]
9. Relationship between cold hardiness and supercooling point in Aedes albopictus eggs. Hanson SM; Craig GB J Am Mosq Control Assoc; 1995 Mar; 11(1):35-8. PubMed ID: 7616187 [TBL] [Abstract][Full Text] [Related]
10. Adjustments of the enzymatic complement for polyol biosynthesis and accumulation in diapausing cold-acclimated adults of Pyrrhocoris apterus. Kostál V; Tollarová M; Sula J J Insect Physiol; 2004 Apr; 50(4):303-13. PubMed ID: 15081823 [TBL] [Abstract][Full Text] [Related]
11. Thermal tolerance in a south-east African population of the tsetse fly Glossina pallidipes (Diptera, Glossinidae): implications for forecasting climate change impacts. Terblanche JS; Clusella-Trullas S; Deere JA; Chown SL J Insect Physiol; 2008 Jan; 54(1):114-27. PubMed ID: 17889900 [TBL] [Abstract][Full Text] [Related]
12. The tissue and plasma concentration of polyols and sugars in sheep intrauterine growth retardation. Regnault TR; Teng C; de Vrijer B; Galan HL; Wilkening RB; Battaglia FC Exp Biol Med (Maywood); 2010 Aug; 235(8):999-1006. PubMed ID: 20576742 [TBL] [Abstract][Full Text] [Related]
13. Natural genetic variation in acclimation capacity at sub-zero temperatures after cold acclimation at 4 degrees C in different Arabidopsis thaliana accessions. Le MQ; Engelsberger WR; Hincha DK Cryobiology; 2008 Oct; 57(2):104-12. PubMed ID: 18619434 [TBL] [Abstract][Full Text] [Related]
14. Seasonal patterns of cold hardiness and cryoprotectant profiles in Brevicoryne brassicae (Hemiptera: Aphididae). Saeidi F; Moharramipour S; Barzegar M Environ Entomol; 2012 Dec; 41(6):1638-43. PubMed ID: 23321113 [TBL] [Abstract][Full Text] [Related]
15. Seasonal variation of trehalose and glycerol concentrations in winter snow-active insects. Vanin S; Bubacco L; Beltramini M Cryo Letters; 2008; 29(6):485-91. PubMed ID: 19280052 [TBL] [Abstract][Full Text] [Related]
16. Temperature-dependent chemical components accumulation in Hippodamia variegata (Coleoptera: Coccinellidae) during overwintering. Hamedi N; Moharramipour S; Barzegar M Environ Entomol; 2013 Apr; 42(2):375-80. PubMed ID: 23575029 [TBL] [Abstract][Full Text] [Related]
17. Freezing tolerance and low molecular weight cryoprotectants in an invasive parasitic fly, the deer ked (Lipoptena cervi). Nieminen P; Paakkonen T; Eerilä H; Puukka K; Riikonen J; Lehto VP; Mustonen AM J Exp Zool A Ecol Genet Physiol; 2012 Jan; 317(1):1-8. PubMed ID: 22076947 [TBL] [Abstract][Full Text] [Related]
18. Sugars regulate cold-induced gene expression and freezing-tolerance in barley cell cultures. Tabaei-Aghdaei SR; Pearce RS; Harrison P J Exp Bot; 2003 Jun; 54(387):1565-75. PubMed ID: 12730262 [TBL] [Abstract][Full Text] [Related]
19. Overwintering of the boreal butterfly Colias palaeno in central Europe. Vrba P; Dolek M; Nedved O; Zahradnickova H; Cerrato C; Konvicka M Cryo Letters; 2014; 35(3):247-54. PubMed ID: 24997843 [TBL] [Abstract][Full Text] [Related]
20. Klebsormidium flaccidum, a charophycean green alga, exhibits cold acclimation that is closely associated with compatible solute accumulation and ultrastructural changes. Nagao M; Matsui K; Uemura M Plant Cell Environ; 2008 Jun; 31(6):872-85. PubMed ID: 18315534 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]