BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 20416405)

  • 1. Chronic intermittent hypoxia affects integration of sensory input by neurons in the nucleus tractus solitarii.
    Kline DD
    Respir Physiol Neurobiol; 2010 Nov; 174(1-2):29-36. PubMed ID: 20416405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TRPV1 channels contribute to spontaneous glutamate release in nucleus tractus solitarii following chronic intermittent hypoxia.
    Kline DD; Wang S; Kunze DL
    J Neurophysiol; 2019 Mar; 121(3):881-892. PubMed ID: 30601692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Loss of excitatory amino acid transporter restraint following chronic intermittent hypoxia contributes to synaptic alterations in nucleus tractus solitarii.
    Martinez D; Rogers RC; Hasser EM; Hermann GE; Kline DD
    J Neurophysiol; 2020 Jun; 123(6):2122-2135. PubMed ID: 32347148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxytocin and corticotropin-releasing hormone exaggerate nucleus tractus solitarii neuronal and synaptic activity following chronic intermittent hypoxia.
    Gama de Barcellos Filho P; Dantzler HA; Hasser EM; Kline DD
    J Physiol; 2024 May; ():. PubMed ID: 38698722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chronic intermittent hypoxia depresses afferent neurotransmission in NTS neurons by a reduction in the number of active synapses.
    Almado CE; Machado BH; Leão RM
    J Neurosci; 2012 Nov; 32(47):16736-46. PubMed ID: 23175827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dopamine inhibits N-type channels in visceral afferents to reduce synaptic transmitter release under normoxic and chronic intermittent hypoxic conditions.
    Kline DD; Hendricks G; Hermann G; Rogers RC; Kunze DL
    J Neurophysiol; 2009 May; 101(5):2270-8. PubMed ID: 19244351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of astrocytes in the nucleus tractus solitarii in maintaining central control of autonomic function.
    Martinez D; Kline DD
    Am J Physiol Regul Integr Comp Physiol; 2021 Apr; 320(4):R418-R424. PubMed ID: 33439770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exaggerated potassium current reduction by oxytocin in visceral sensory neurons following chronic intermittent hypoxia.
    Dantzler HA; Kline DD
    Auton Neurosci; 2020 Dec; 229():102735. PubMed ID: 33032244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive depression in synaptic transmission in the nucleus of the solitary tract after in vivo chronic intermittent hypoxia: evidence for homeostatic plasticity.
    Kline DD; Ramirez-Navarro A; Kunze DL
    J Neurosci; 2007 Apr; 27(17):4663-73. PubMed ID: 17460079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chronic intermittent hypoxia enhances glycinergic inhibition in nucleus tractus solitarius.
    Jia S; Rybalchenko N; Kunwar K; Farmer GE; Little JT; Toney GM; Cunningham JT
    J Neurophysiol; 2022 Dec; 128(6):1383-1394. PubMed ID: 36321700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proinflammatory Cytokines in the Nucleus of the Solitary Tract of Hypertensive Rats Exposed to Chronic Intermittent Hypoxia.
    Oyarce MP; Iturriaga R
    Adv Exp Med Biol; 2018; 1071():69-74. PubMed ID: 30357735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced Firing in NTS Induced by Short-Term Sustained Hypoxia Is Modulated by Glia-Neuron Interaction.
    Accorsi-Mendonça D; Almado CE; Bonagamba LG; Castania JA; Moraes DJ; Machado BH
    J Neurosci; 2015 Apr; 35(17):6903-17. PubMed ID: 25926465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chronic intermittent hypoxia alters NMDA and AMPA-evoked currents in NTS neurons receiving carotid body chemoreceptor inputs.
    de Paula PM; Tolstykh G; Mifflin S
    Am J Physiol Regul Integr Comp Physiol; 2007 Jun; 292(6):R2259-65. PubMed ID: 17332161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in carotid body and nTS neuronal excitability following neonatal sustained and chronic intermittent hypoxia exposure.
    Mayer CA; Wilson CG; MacFarlane PM
    Respir Physiol Neurobiol; 2015 Jan; 205():28-36. PubMed ID: 25266393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chronic intermittent hypoxia alters glutamatergic control of sympathetic and respiratory activities in the commissural NTS of rats.
    Costa-Silva JH; Zoccal DB; Machado BH
    Am J Physiol Regul Integr Comp Physiol; 2012 Mar; 302(6):R785-93. PubMed ID: 22204959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carotid body inflammation and cardiorespiratory alterations in intermittent hypoxia.
    Del Rio R; Moya EA; Parga MJ; Madrid C; Iturriaga R
    Eur Respir J; 2012 Jun; 39(6):1492-500. PubMed ID: 22183481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chronic intermittent hypoxia induces changes in expression of synaptic proteins in the nucleus of the solitary tract.
    Moreau JM; Ciriello J
    Brain Res; 2015 Oct; 1622():300-7. PubMed ID: 26183015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acute inhibition of glial cells in the NTS does not affect respiratory and sympathetic activities in rats exposed to chronic intermittent hypoxia.
    Costa KM; Moraes DJ; Machado BH
    Brain Res; 2013 Feb; 1496():36-48. PubMed ID: 23228722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunoreactivity for neuronal NOS and fluorescent indication of NO formation in the NTS of juvenile rats submitted to chronic intermittent hypoxia.
    Pajolla GP; Accorsi-Mendonça D; Lunardi CN; Bendhack LM; Machado BH; Llewellyn-Smith IJ
    Auton Neurosci; 2009 Jun; 148(1-2):55-62. PubMed ID: 19345616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemogenetic inhibition of NTS astrocytes normalizes cardiac autonomic control and ameliorate hypertension during chronic intermittent hypoxia.
    Pereyra K; Las Heras A; Toledo C; Díaz-Jara E; Iturriaga R; Del Rio R
    Biol Res; 2023 Nov; 56(1):57. PubMed ID: 37932867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.