BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 20416505)

  • 1. Structural characterization of acylimine-containing blue and red chromophores in mTagBFP and TagRFP fluorescent proteins.
    Subach OM; Malashkevich VN; Zencheck WD; Morozova KS; Piatkevich KD; Almo SC; Verkhusha VV
    Chem Biol; 2010 Apr; 17(4):333-41. PubMed ID: 20416505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insight into the common mechanism of the chromophore formation in the red fluorescent proteins: the elusive blue intermediate revealed.
    Bravaya KB; Subach OM; Korovina N; Verkhusha VV; Krylov AI
    J Am Chem Soc; 2012 Feb; 134(5):2807-14. PubMed ID: 22239269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoactivation mechanism of PAmCherry based on crystal structures of the protein in the dark and fluorescent states.
    Subach FV; Malashkevich VN; Zencheck WD; Xiao H; Filonov GS; Almo SC; Verkhusha VV
    Proc Natl Acad Sci U S A; 2009 Dec; 106(50):21097-102. PubMed ID: 19934036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystallographic structures of Discosoma red fluorescent protein with immature and mature chromophores: linking peptide bond trans-cis isomerization and acylimine formation in chromophore maturation.
    Tubbs JL; Tainer JA; Getzoff ED
    Biochemistry; 2005 Jul; 44(29):9833-40. PubMed ID: 16026155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conversion of red fluorescent protein into a bright blue probe.
    Subach OM; Gundorov IS; Yoshimura M; Subach FV; Zhang J; Grüenwald D; Souslova EA; Chudakov DM; Verkhusha VV
    Chem Biol; 2008 Oct; 15(10):1116-24. PubMed ID: 18940671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding blue-to-red conversion in monomeric fluorescent timers and hydrolytic degradation of their chromophores.
    Pletnev S; Subach FV; Dauter Z; Wlodawer A; Verkhusha VV
    J Am Chem Soc; 2010 Feb; 132(7):2243-53. PubMed ID: 20121102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amino acid substitutions around the chromophore of the chromoprotein Rtms5 influence polypeptide cleavage.
    Turcic K; Pettikiriarachchi A; Battad J; Wilmann PG; Rossjohn J; Dove SG; Devenish RJ; Prescott M
    Biochem Biophys Res Commun; 2006 Feb; 340(4):1139-43. PubMed ID: 16414348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The structure of the chromophore within DsRed, a red fluorescent protein from coral.
    Gross LA; Baird GS; Hoffman RC; Baldridge KK; Tsien RY
    Proc Natl Acad Sci U S A; 2000 Oct; 97(22):11990-5. PubMed ID: 11050230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peptide bond trans-cis isomerization and acylimine formation in chromophore maturation of the red fluorescent proteins.
    Ren X; Xie D; Zeng J
    J Phys Chem A; 2011 Sep; 115(36):10129-35. PubMed ID: 21834555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of a red fluorescent protein from Zoanthus, zRFP574, reveals a novel chromophore.
    Pletneva N; Pletnev S; Tikhonova T; Popov V; Martynov V; Pletnev V
    Acta Crystallogr D Biol Crystallogr; 2006 May; 62(Pt 5):527-32. PubMed ID: 16627946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A purple-blue chromoprotein from Goniopora tenuidens belongs to the DsRed subfamily of GFP-like proteins.
    Martynov VI; Maksimov BI; Martynova NY; Pakhomov AA; Gurskaya NG; Lukyanov SA
    J Biol Chem; 2003 Nov; 278(47):46288-92. PubMed ID: 12975373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural analysis of the immature form of the GFP homologue DsRed.
    Zaveer MS; Zimmer M
    Bioorg Med Chem Lett; 2003 Nov; 13(22):3919-22. PubMed ID: 14592475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromophore formation in DsRed occurs by a branched pathway.
    Strack RL; Strongin DE; Mets L; Glick BS; Keenan RJ
    J Am Chem Soc; 2010 Jun; 132(24):8496-505. PubMed ID: 20509651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An enhanced monomeric blue fluorescent protein with the high chemical stability of the chromophore.
    Subach OM; Cranfill PJ; Davidson MW; Verkhusha VV
    PLoS One; 2011; 6(12):e28674. PubMed ID: 22174863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. zFP538, a yellow-fluorescent protein from Zoanthus, contains a novel three-ring chromophore.
    Remington SJ; Wachter RM; Yarbrough DK; Branchaud B; Anderson DC; Kallio K; Lukyanov KA
    Biochemistry; 2005 Jan; 44(1):202-12. PubMed ID: 15628861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Refined crystal structure of DsRed, a red fluorescent protein from coral, at 2.0-A resolution.
    Yarbrough D; Wachter RM; Kallio K; Matz MV; Remington SJ
    Proc Natl Acad Sci U S A; 2001 Jan; 98(2):462-7. PubMed ID: 11209050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The crystal structure of red fluorescent protein TagRFP-T reveals the mechanism of its superior photostability.
    Liu R; Liang QN; Du SQ; Hu XJ; Ding Y
    Biochem Biophys Res Commun; 2016 Aug; 477(2):229-34. PubMed ID: 27297107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum refinement of protein structures: implementation and application to the red fluorescent protein DsRed.M1.
    Hsiao YW; Sanchez-Garcia E; Doerr M; Thiel W
    J Phys Chem B; 2010 Nov; 114(46):15413-23. PubMed ID: 20977248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural characterization of a thiazoline-containing chromophore in an orange fluorescent protein, monomeric Kusabira Orange.
    Kikuchi A; Fukumura E; Karasawa S; Mizuno H; Miyawaki A; Shiro Y
    Biochemistry; 2008 Nov; 47(44):11573-80. PubMed ID: 18844376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The 2.0-A crystal structure of eqFP611, a far red fluorescent protein from the sea anemone Entacmaea quadricolor.
    Petersen J; Wilmann PG; Beddoe T; Oakley AJ; Devenish RJ; Prescott M; Rossjohn J
    J Biol Chem; 2003 Nov; 278(45):44626-31. PubMed ID: 12909624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.