These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
98 related articles for article (PubMed ID: 20416555)
21. The prospects of estimating trabecular bone tissue properties from the combination of ultrasound, dual-energy X-ray absorptiometry, microcomputed tomography, and microfinite element analysis. van Lenthe GH; van den Bergh JP; Hermus AR; Huiskes R J Bone Miner Res; 2001 Mar; 16(3):550-5. PubMed ID: 11277273 [TBL] [Abstract][Full Text] [Related]
22. Spatial distribution of anisotropic acoustic impedance assessed by time-resolved 50-MHz scanning acoustic microscopy and its relation to porosity in human cortical bone. Saïed A; Raum K; Leguerney I; Laugier P Bone; 2008 Jul; 43(1):187-194. PubMed ID: 18407822 [TBL] [Abstract][Full Text] [Related]
23. Dependence of ultrasonic attenuation on bone mass and microstructure in bovine cortical bone. Sasso M; Haïat G; Yamato Y; Naili S; Matsukawa M J Biomech; 2008; 41(2):347-55. PubMed ID: 18028934 [TBL] [Abstract][Full Text] [Related]
24. Experimentally-based multiscale model of the elastic moduli of bovine trabecular bone and its constituents. Hamed E; Novitskaya E; Li J; Jasiuk I; McKittrick J Mater Sci Eng C Mater Biol Appl; 2015 Sep; 54():207-16. PubMed ID: 26046284 [TBL] [Abstract][Full Text] [Related]
25. Relationships between the anisotropy of longitudinal wave velocity and hydroxyapatite crystallite orientation in bovine cortical bone. Yamamoto K; Nakatsuji T; Yaoi Y; Yamato Y; Yanagitani T; Matsukawa M; Yamazaki K; Matsuyama Y Ultrasonics; 2012 Mar; 52(3):377-86. PubMed ID: 22014464 [TBL] [Abstract][Full Text] [Related]
26. Validation of speed of sound for the assessment of cortical bone maturity. Rose EC; Hagenmüller M; Jonas IE; Rahn BA Eur J Orthod; 2005 Apr; 27(2):190-5. PubMed ID: 15817628 [TBL] [Abstract][Full Text] [Related]
27. Noninvasive determination of ulnar stiffness from mechanical response--in vivo comparison of stiffness and bone mineral content in humans. Steele CR; Zhou LJ; Guido D; Marcus R; Heinrichs WL; Cheema C J Biomech Eng; 1988 May; 110(2):87-96. PubMed ID: 3379938 [TBL] [Abstract][Full Text] [Related]
28. Frequency dependence of ultrasonic attenuation in bovine cortical bone: an in vitro study. Sasso M; Haïat G; Yamato Y; Naili S; Matsukawa M Ultrasound Med Biol; 2007 Dec; 33(12):1933-42. PubMed ID: 17681677 [TBL] [Abstract][Full Text] [Related]
29. Analysis of anisotropic viscoelastoplastic properties of cortical bone tissues. Abdel-Wahab AA; Alam K; Silberschmidt VV J Mech Behav Biomed Mater; 2011 Jul; 4(5):807-20. PubMed ID: 21565728 [TBL] [Abstract][Full Text] [Related]
30. Effect of collagen and mineral content on the high-frequency ultrasonic properties of human cancellous bone. Hoffmeister BK; Whitten SA; Kaste SC; Rho JY Osteoporos Int; 2002 Jan; 13(1):26-32. PubMed ID: 11878452 [TBL] [Abstract][Full Text] [Related]
31. A comparison of reflection and transmission ultrasonic techniques for measurement of cancellous bone elasticity. Ashman RB; Antich PP; Gonzales J; Anderson JA; Rho JY J Biomech; 1994 Sep; 27(9):1195-9. PubMed ID: 7929470 [TBL] [Abstract][Full Text] [Related]
32. Prediction of bone mechanical properties using QUS and pQCT: study of the human distal radius. Muller M; Mitton D; Moilanen P; Bousson V; Talmant M; Laugier P Med Eng Phys; 2008 Jul; 30(6):761-7. PubMed ID: 17988924 [TBL] [Abstract][Full Text] [Related]
33. Orientation of bone mineral and its role in the anisotropic mechanical properties of bone--transverse anisotropy. Sasaki N; Matsushima N; Ikawa T; Yamamura H; Fukuda A J Biomech; 1989; 22(2):157-64. PubMed ID: 2540205 [TBL] [Abstract][Full Text] [Related]
34. The relative influence of apatite crystal orientations and intracortical porosity on the elastic anisotropy of human cortical bone. Baumann AP; Deuerling JM; Rudy DJ; Niebur GL; Roeder RK J Biomech; 2012 Nov; 45(16):2743-9. PubMed ID: 23058867 [TBL] [Abstract][Full Text] [Related]
35. Anisotropy of bovine cortical bone tissue damage properties. Szabó ME; Thurner PJ J Biomech; 2013 Jan; 46(1):2-6. PubMed ID: 23063771 [TBL] [Abstract][Full Text] [Related]
36. Fluoride-induced changes in ashed bone mineral of growing sheep. An X-ray diffraction analysis. Jokl P; Skinner HC J Bone Joint Surg Am; 1973 Jun; 55(4):761-70. PubMed ID: 4283750 [No Abstract] [Full Text] [Related]
37. Minor elements in bone mineral and their effects on its solubility. Baud CA; Bang S; Very JM J Biol Buccale; 1977 Sep; 5(3):195-202. PubMed ID: 122694 [TBL] [Abstract][Full Text] [Related]
38. Longitudinal elastic properties and porosity of cortical bone tissue vary with age in human proximal femur. Malo MK; Rohrbach D; Isaksson H; Töyräs J; Jurvelin JS; Tamminen IS; Kröger H; Raum K Bone; 2013 Apr; 53(2):451-8. PubMed ID: 23334084 [TBL] [Abstract][Full Text] [Related]
39. The acoustic properties of normal and imbedded bovine bone as measured by acoustic microscopy. Zimmerman MC; Prabhakar A; Chokshi BV; Budhwani N; Berndt H J Biomed Mater Res; 1994 Aug; 28(8):931-8. PubMed ID: 7983091 [TBL] [Abstract][Full Text] [Related]
40. The role of ions and mineral-organic interfacial bonding on the compressive properties of cortical bone. Walsh WR; Guzelsu N Biomed Mater Eng; 1993; 3(2):75-84. PubMed ID: 8369729 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]