These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 20417215)
21. Annotation and analysis of low-complexity protein families of Anopheles gambiae that are associated with cuticle. Cornman RS; Willis JH Insect Mol Biol; 2009 Oct; 18(5):607-22. PubMed ID: 19754739 [TBL] [Abstract][Full Text] [Related]
22. Annotation and analysis of a large cuticular protein family with the R&R Consensus in Anopheles gambiae. Cornman RS; Togawa T; Dunn WA; He N; Emmons AC; Willis JH BMC Genomics; 2008 Jan; 9():22. PubMed ID: 18205929 [TBL] [Abstract][Full Text] [Related]
23. Structural basis for new pattern of conserved amino acid residues related to chitin-binding in the antifungal peptide from the coconut rhinoceros beetle Oryctes rhinoceros. Hemmi H; Ishibashi J; Tomie T; Yamakawa M J Biol Chem; 2003 Jun; 278(25):22820-7. PubMed ID: 12676931 [TBL] [Abstract][Full Text] [Related]
24. Developmental expression patterns of cuticular protein genes with the R&R Consensus from Anopheles gambiae. Togawa T; Dunn WA; Emmons AC; Nagao J; Willis JH Insect Biochem Mol Biol; 2008 May; 38(5):508-19. PubMed ID: 18405829 [TBL] [Abstract][Full Text] [Related]
25. Studies on resilin-like gene products in insects. Andersen SO Insect Biochem Mol Biol; 2010 Jul; 40(7):541-51. PubMed ID: 20457254 [TBL] [Abstract][Full Text] [Related]
26. G protein-coupled receptors in Anopheles gambiae. Hill CA; Fox AN; Pitts RJ; Kent LB; Tan PL; Chrystal MA; Cravchik A; Collins FH; Robertson HM; Zwiebel LJ Science; 2002 Oct; 298(5591):176-8. PubMed ID: 12364795 [TBL] [Abstract][Full Text] [Related]
27. Distribution of cuticular proteins in different structures of adult Anopheles gambiae. Zhou Y; Badgett MJ; Bowen JH; Vannini L; Orlando R; Willis JH Insect Biochem Mol Biol; 2016 Aug; 75():45-57. PubMed ID: 27179905 [TBL] [Abstract][Full Text] [Related]
28. Embryonic desiccation resistance in Aedes aegypti: presumptive role of the chitinized serosal cuticle. Rezende GL; Martins AJ; Gentile C; Farnesi LC; Pelajo-Machado M; Peixoto AA; Valle D BMC Dev Biol; 2008 Sep; 8():82. PubMed ID: 18789161 [TBL] [Abstract][Full Text] [Related]
29. Identification of the novel evolutionary conserved obstructor multigene family in invertebrates. Behr M; Hoch M FEBS Lett; 2005 Dec; 579(30):6827-33. PubMed ID: 16325182 [TBL] [Abstract][Full Text] [Related]
30. The Aedes aegypti larval transcriptome: a comparative perspective with emphasis on trypsins and the domain structure of peritrophins. Venancio TM; Cristofoletti PT; Ferreira C; Verjovski-Almeida S; Terra WR Insect Mol Biol; 2009 Feb; 18(1):33-44. PubMed ID: 19054160 [TBL] [Abstract][Full Text] [Related]
31. Genes encoding proteins with peritrophin A-type chitin-binding domains in Tribolium castaneum are grouped into three distinct families based on phylogeny, expression and function. Jasrapuria S; Arakane Y; Osman G; Kramer KJ; Beeman RW; Muthukrishnan S Insect Biochem Mol Biol; 2010 Mar; 40(3):214-27. PubMed ID: 20144715 [TBL] [Abstract][Full Text] [Related]
32. Choline transporter-like protein 2 interacts with chitin synthase 1 and is involved in insect cuticle development. Duan Y; Zhu W; Zhao X; Merzendorfer H; Chen J; Zou X; Yang Q Insect Biochem Mol Biol; 2022 Feb; 141():103718. PubMed ID: 34982980 [TBL] [Abstract][Full Text] [Related]
33. Structural cuticular proteins from arthropods: annotation, nomenclature, and sequence characteristics in the genomics era. Willis JH Insect Biochem Mol Biol; 2010 Mar; 40(3):189-204. PubMed ID: 20171281 [TBL] [Abstract][Full Text] [Related]
34. Sequence studies of proteins from larval and pupal cuticle of the yellow meal worm, Tenebrio molitor. Andersen SO; Rafn K; Roepstorff P Insect Biochem Mol Biol; 1997 Feb; 27(2):121-31. PubMed ID: 9066122 [TBL] [Abstract][Full Text] [Related]
36. Identification, expression pattern, and feature analysis of cuticular protein genes in the pine moth Dendrolimus punctatus (Lepidoptera: Lasiocampidae). Yang CH; Yang PC; Zhang SF; Shi ZY; Kang L; Zhang AB Insect Biochem Mol Biol; 2017 Apr; 83():94-106. PubMed ID: 28284855 [TBL] [Abstract][Full Text] [Related]
37. Model reactions for insect cuticle sclerotization: cross-linking of recombinant cuticular proteins upon their laccase-catalyzed oxidative conjugation with catechols. Suderman RJ; Dittmer NT; Kanost MR; Kramer KJ Insect Biochem Mol Biol; 2006 Apr; 36(4):353-65. PubMed ID: 16551549 [TBL] [Abstract][Full Text] [Related]
38. Identification of the Aedes aegypti peritrophic matrix protein AeIMUCI as a heme-binding protein. Devenport M; Alvarenga PH; Shao L; Fujioka H; Bianconi ML; Oliveira PL; Jacobs-Lorena M Biochemistry; 2006 Aug; 45(31):9540-9. PubMed ID: 16878988 [TBL] [Abstract][Full Text] [Related]
39. Cuticular protein with a low complexity sequence becomes cross-linked during insect cuticle sclerotization and is required for the adult molt. Mun S; Noh MY; Dittmer NT; Muthukrishnan S; Kramer KJ; Kanost MR; Arakane Y Sci Rep; 2015 May; 5():10484. PubMed ID: 25994234 [TBL] [Abstract][Full Text] [Related]
40. Computational identification of novel chitinase-like proteins in the Drosophila melanogaster genome. Zhu Q; Deng Y; Vanka P; Brown SJ; Muthukrishnan S; Kramer KJ Bioinformatics; 2004 Jan; 20(2):161-9. PubMed ID: 14734306 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]