BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 20417532)

  • 1. Redox regulation of chlorophyll biosynthesis.
    Stenbaek A; Jensen PE
    Phytochemistry; 2010 Jun; 71(8-9):853-9. PubMed ID: 20417532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of tetrapyrrole biosynthesis in higher plants.
    Moulin M; Smith AG
    Biochem Soc Trans; 2005 Aug; 33(Pt 4):737-42. PubMed ID: 16042589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tobacco Mg protoporphyrin IX methyltransferase is involved in inverse activation of Mg porphyrin and protoheme synthesis.
    Alawady AE; Grimm B
    Plant J; 2005 Jan; 41(2):282-90. PubMed ID: 15634204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light signalling pathways regulating the Mg-chelatase branchpoint of chlorophyll synthesis during de-etiolation in Arabidopsis thaliana.
    Stephenson PG; Terry MJ
    Photochem Photobiol Sci; 2008 Oct; 7(10):1243-52. PubMed ID: 18846290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic basis for linking the first two enzymes of chlorophyll biosynthesis.
    Shepherd M; McLean S; Hunter CN
    FEBS J; 2005 Sep; 272(17):4532-9. PubMed ID: 16128821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The activity of barley NADPH-dependent thioredoxin reductase C is independent of the oligomeric state of the protein: tetrameric structure determined by cryo-electron microscopy.
    Wulff RP; Lundqvist J; Rutsdottir G; Hansson A; Stenbaek A; Elmlund D; Elmlund H; Jensen PE; Hansson M
    Biochemistry; 2011 May; 50(18):3713-23. PubMed ID: 21456578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thioredoxin and NADPH-Dependent Thioredoxin Reductase C Regulation of Tetrapyrrole Biosynthesis.
    Da Q; Wang P; Wang M; Sun T; Jin H; Liu B; Wang J; Grimm B; Wang HB
    Plant Physiol; 2017 Oct; 175(2):652-666. PubMed ID: 28827456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thiol-based redox control of enzymes involved in the tetrapyrrole biosynthesis pathway in plants.
    Richter AS; Grimm B
    Front Plant Sci; 2013 Sep; 4():371. PubMed ID: 24065975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chloroplast biogenesis 89: development of analytical tools for probing the biosynthetic topography of photosynthetic membranes by determination of resonance excitation energy transfer distances separating metabolic tetrapyrrole donors from chlorophyll a acceptors.
    Kopetz KJ; Kolossov VL; Rebeiz CA
    Anal Biochem; 2004 Jun; 329(2):207-19. PubMed ID: 15158479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox-control of chlorophyll biosynthesis mainly depends on thioredoxins.
    Richter AS; Pérez-Ruiz JM; Cejudo FJ; Grimm B
    FEBS Lett; 2018 Sep; 592(18):3111-3115. PubMed ID: 30076598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thioredoxin redox regulates ATPase activity of magnesium chelatase CHLI subunit and modulates redox-mediated signaling in tetrapyrrole biosynthesis and homeostasis of reactive oxygen species in pea plants.
    Luo T; Fan T; Liu Y; Rothbart M; Yu J; Zhou S; Grimm B; Luo M
    Plant Physiol; 2012 May; 159(1):118-30. PubMed ID: 22452855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Green or red: what stops the traffic in the tetrapyrrole pathway?
    Cornah JE; Terry MJ; Smith AG
    Trends Plant Sci; 2003 May; 8(5):224-30. PubMed ID: 12758040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Posttranslational influence of NADPH-dependent thioredoxin reductase C on enzymes in tetrapyrrole synthesis.
    Richter AS; Peter E; Rothbart M; Schlicke H; Toivola J; Rintamäki E; Grimm B
    Plant Physiol; 2013 May; 162(1):63-73. PubMed ID: 23569108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of regulation and interplastid localization of chlorophyll biosynthesis.
    Averina NG
    Membr Cell Biol; 1998; 12(5):627-43. PubMed ID: 10379645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FLU: a negative regulator of chlorophyll biosynthesis in Arabidopsis thaliana.
    Meskauskiene R; Nater M; Goslings D; Kessler F; op den Camp R; Apel K
    Proc Natl Acad Sci U S A; 2001 Oct; 98(22):12826-31. PubMed ID: 11606728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NTRC and TRX-f Coordinately Affect the Levels of Enzymes of Chlorophyll Biosynthesis in a Light-Dependent Manner.
    Wittmann D; Geigenberger P; Grimm B
    Cells; 2023 Jun; 12(12):. PubMed ID: 37371140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Common chelatase design in the branched tetrapyrrole pathways of heme and anaerobic cobalamin synthesis.
    Schubert HL; Raux E; Wilson KS; Warren MJ
    Biochemistry; 1999 Aug; 38(33):10660-9. PubMed ID: 10451360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Post-translational control of tetrapyrrole biosynthesis in plants, algae, and cyanobacteria.
    Czarnecki O; Grimm B
    J Exp Bot; 2012 Feb; 63(4):1675-87. PubMed ID: 22231500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The cell biology of tetrapyrroles: a life and death struggle.
    Mochizuki N; Tanaka R; Grimm B; Masuda T; Moulin M; Smith AG; Tanaka A; Terry MJ
    Trends Plant Sci; 2010 Sep; 15(9):488-98. PubMed ID: 20598625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Metal chelatases involved in chlorophyll and heme biosynthetic pathways in photosynthetic organisms].
    Masuda T; Suzuki T; Takamiya K
    Tanpakushitsu Kakusan Koso; 2000 Apr; 45(5):700-9. PubMed ID: 10771597
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.