These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 20417539)

  • 1. Characterization of alginate-like exopolysaccharides isolated from aerobic granular sludge in pilot-plant.
    Lin Y; de Kreuk M; van Loosdrecht MC; Adin A
    Water Res; 2010 Jun; 44(11):3355-64. PubMed ID: 20417539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The chemical and mechanical differences between alginate-like exopolysaccharides isolated from aerobic flocculent sludge and aerobic granular sludge.
    Lin YM; Sharma PK; van Loosdrecht MC
    Water Res; 2013 Jan; 47(1):57-65. PubMed ID: 23084341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gel-forming exopolysaccharides explain basic differences between structures of aerobic sludge granules and floccular sludges.
    Seviour T; Pijuan M; Nicholson T; Keller J; Yuan Z
    Water Res; 2009 Oct; 43(18):4469-78. PubMed ID: 19682721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous recovery of phosphorus and alginate-like exopolysaccharides from two types of aerobic granular sludge.
    Chen X; Wang J; Wang Q; Yuan T; Lei Z; Zhang Z; Shimizu K; Lee DJ
    Bioresour Technol; 2022 Feb; 346():126411. PubMed ID: 34838630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification and conformational analysis of a key exopolysaccharide component of mixed culture aerobic sludge granules.
    Seviour T; Donose BC; Pijuan M; Yuan Z
    Environ Sci Technol; 2010 Jun; 44(12):4729-34. PubMed ID: 20476734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Self-aggregation property of bacterial alginates extracted from aerobic granules].
    Lin YM; Wang L
    Huan Jing Ke Xue; 2008 May; 29(5):1181-6. PubMed ID: 18624176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced Aerobic Sludge Granulation by Seeding Concentrated Activated Sludge with Ca-Alginate Gel.
    Sun C; Zhan H; Wang L
    Water Environ Res; 2017 Dec; 89(12):2078-2087. PubMed ID: 28087923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of oligoguluronates on alginate gelation, kinetics, and polymer organization.
    Jørgensen TE; Sletmoen M; Draget KI; Stokke BT
    Biomacromolecules; 2007 Aug; 8(8):2388-97. PubMed ID: 17602585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recovering and potentially applying of alginate like extracellular polymers from anaerobic digested sludge.
    Hao X; Li H; Yuan T; Wu Y
    Sci Total Environ; 2023 Nov; 898():165549. PubMed ID: 37454849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The contribution of exopolysaccharides induced struvites accumulation to ammonium adsorption in aerobic granular sludge.
    Lin YM; Bassin JP; van Loosdrecht MC
    Water Res; 2012 Mar; 46(4):986-92. PubMed ID: 22209260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aerobic sludge granulation: a tale of two polysaccharides?
    Seviour T; Yuan Z; van Loosdrecht MC; Lin Y
    Water Res; 2012 Oct; 46(15):4803-13. PubMed ID: 22776210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation and properties of aerobic granular sludge.
    Etterer T; Wilderer PA
    Water Sci Technol; 2001; 43(3):19-26. PubMed ID: 11381904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NMR and MALDI-TOF MS based characterization of exopolysaccharides in anaerobic microbial aggregates from full-scale reactors.
    Gonzalez-Gil G; Thomas L; Emwas AH; Lens PN; Saikaly PE
    Sci Rep; 2015 Sep; 5():14316. PubMed ID: 26391984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fractionation and characterization of sludge bacterial extracellular polymers by FT-IR, 13C-NMR, 1H-NMR.
    Zhou LX; Liang JR; Zha XH; Wong JW
    Water Sci Technol; 2001; 44(10):71-8. PubMed ID: 11794684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Causes and control of filamentous growth in aerobic granular sludge sequencing batch reactors.
    Liu Y; Liu QS
    Biotechnol Adv; 2006; 24(1):115-27. PubMed ID: 16150563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fractionation and characterization of dissolved extracellular and intracellular products derived from floccular sludge and aerobic granules.
    Tu X; Song Y; Yu H; Zeng P; Liu R
    Bioresour Technol; 2012 Nov; 123():55-61. PubMed ID: 22940298
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Cu2+ biosorption by bacterial alginate extracted from aerobic granules and its mechanism investigation].
    Zhang HL; Lin YM; Wang L
    Huan Jing Ke Xue; 2010 Mar; 31(3):731-7. PubMed ID: 20358835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the production of alginate-like exopolysaccharides (ALE) and tryptophan in aerobic granular sludge systems.
    Rollemberg SLS; Dos Santos AF; Ferreira TJT; Firmino PIM; Dos Santos AB
    Bioprocess Biosyst Eng; 2021 Feb; 44(2):259-270. PubMed ID: 32889571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Granulation of activated sludge in a pilot-scale sequencing batch reactor for the treatment of low-strength municipal wastewater.
    Ni BJ; Xie WM; Liu SG; Yu HQ; Wang YZ; Wang G; Dai XL
    Water Res; 2009 Feb; 43(3):751-61. PubMed ID: 19059624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recovery of extracellular biopolymers from conventional activated sludge: Potential, characteristics and limitation.
    Li J; Hao X; Gan W; van Loosdrecht MCM; Wu Y
    Water Res; 2021 Oct; 205():117706. PubMed ID: 34600231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.