These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 20417644)

  • 1. Processive selenocysteine incorporation during synthesis of eukaryotic selenoproteins.
    Fixsen SM; Howard MT
    J Mol Biol; 2010 Jun; 399(3):385-96. PubMed ID: 20417644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional analysis of the interplay between translation termination, selenocysteine codon context, and selenocysteine insertion sequence-binding protein 2.
    Gupta M; Copeland PR
    J Biol Chem; 2007 Dec; 282(51):36797-807. PubMed ID: 17954931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Selenium Transport Protein, Selenoprotein P, Requires Coding Sequence Determinants to Promote Efficient Selenocysteine Incorporation.
    Shetty SP; Copeland PR
    J Mol Biol; 2018 Dec; 430(24):5217-5232. PubMed ID: 30243837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient incorporation of multiple selenocysteines involves an inefficient decoding step serving as a potential translational checkpoint and ribosome bottleneck.
    Stoytcheva Z; Tujebajeva RM; Harney JW; Berry MJ
    Mol Cell Biol; 2006 Dec; 26(24):9177-84. PubMed ID: 17000762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A recoding element that stimulates decoding of UGA codons by Sec tRNA[Ser]Sec.
    Howard MT; Moyle MW; Aggarwal G; Carlson BA; Anderson CB
    RNA; 2007 Jun; 13(6):912-20. PubMed ID: 17456565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple RNA structures affect translation initiation and UGA redefinition efficiency during synthesis of selenoprotein P.
    Mariotti M; Shetty S; Baird L; Wu S; Loughran G; Copeland PR; Atkins JF; Howard MT
    Nucleic Acids Res; 2017 Dec; 45(22):13004-13015. PubMed ID: 29069514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interplay between termination and translation machinery in eukaryotic selenoprotein synthesis.
    Grundner-Culemann E; Martin GW; Tujebajeva R; Harney JW; Berry MJ
    J Mol Biol; 2001 Jul; 310(4):699-707. PubMed ID: 11453681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Partitioning between recoding and termination at a stop codon-selenocysteine insertion sequence.
    Kotini SB; Peske F; Rodnina MV
    Nucleic Acids Res; 2015 Jul; 43(13):6426-38. PubMed ID: 26040702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expressing recombinant selenoproteins using redefinition of a single UAG codon in an RF1-depleted E. coli host strain.
    Cheng Q; Arnér ESJ
    Methods Enzymol; 2022; 662():95-118. PubMed ID: 35101220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Translational redefinition of UGA codons is regulated by selenium availability.
    Howard MT; Carlson BA; Anderson CB; Hatfield DL
    J Biol Chem; 2013 Jul; 288(27):19401-13. PubMed ID: 23696641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A quantitative model for the rate-limiting process of UGA alternative assignments to stop and selenocysteine codons.
    Chen YF; Lin HC; Chuang KN; Lin CH; Yen HS; Yeang CH
    PLoS Comput Biol; 2017 Feb; 13(2):e1005367. PubMed ID: 28178267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Eukaryotic selenocysteine incorporation follows a nonprocessive mechanism that competes with translational termination.
    Nasim MT; Jaenecke S; Belduz A; Kollmus H; Flohé L; McCarthy JE
    J Biol Chem; 2000 May; 275(20):14846-52. PubMed ID: 10809727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of the Selenoprotein S Positive UGA Recoding (SPUR) element and its position-dependent activity.
    Cockman EM; Narayan V; Willard B; Shetty SP; Copeland PR; Driscoll DM
    RNA Biol; 2019 Dec; 16(12):1682-1696. PubMed ID: 31432740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism and regulation of selenoprotein synthesis.
    Driscoll DM; Copeland PR
    Annu Rev Nutr; 2003; 23():17-40. PubMed ID: 12524431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selenocysteine codons decrease polysome association on endogenous selenoprotein mRNAs.
    Martin GW; Berry MJ
    Genes Cells; 2001 Feb; 6(2):121-9. PubMed ID: 11260257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ribosome Fate during Decoding of UGA-Sec Codons.
    Copeland PR; Howard MT
    Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34948001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Factors and selenocysteine insertion sequence requirements for the synthesis of selenoproteins from a gram-positive anaerobe in Escherichia coli.
    Gursinsky T; Gröbe D; Schierhorn A; Jäger J; Andreesen JR; Söhling B
    Appl Environ Microbiol; 2008 Mar; 74(5):1385-93. PubMed ID: 18165360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recoding elements located adjacent to a subset of eukaryal selenocysteine-specifying UGA codons.
    Howard MT; Aggarwal G; Anderson CB; Khatri S; Flanigan KM; Atkins JF
    EMBO J; 2005 Apr; 24(8):1596-607. PubMed ID: 15791204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of selenocysteine incorporation into the selenium transport protein, selenoprotein P.
    Shetty SP; Shah R; Copeland PR
    J Biol Chem; 2014 Sep; 289(36):25317-26. PubMed ID: 25063811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polysome distribution of phospholipid hydroperoxide glutathione peroxidase mRNA: evidence for a block in elongation at the UGA/selenocysteine codon.
    Fletcher JE; Copeland PR; Driscoll DM
    RNA; 2000 Nov; 6(11):1573-84. PubMed ID: 11105757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.