These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 20417737)
1. Experimental determination of the efficiency of nanostructuring on non-wetting legs of the water strider. Watson GS; Cribb BW; Watson JA Acta Biomater; 2010 Oct; 6(10):4060-4. PubMed ID: 20417737 [TBL] [Abstract][Full Text] [Related]
2. Superior water repellency of water strider legs with hierarchical structures: experiments and analysis. Feng XQ; Gao X; Wu Z; Jiang L; Zheng QS Langmuir; 2007 Apr; 23(9):4892-6. PubMed ID: 17385899 [TBL] [Abstract][Full Text] [Related]
3. The role of micro/nano channel structuring in repelling water on cuticle arrays of the lacewing. Watson GS; Cribb BW; Watson JA J Struct Biol; 2010 Jul; 171(1):44-51. PubMed ID: 20347993 [TBL] [Abstract][Full Text] [Related]
4. Production and characterization of stable superhydrophobic surfaces based on copper hydroxide nanoneedles mimicking the legs of water striders. Wu X; Shi G J Phys Chem B; 2006 Jun; 110(23):11247-52. PubMed ID: 16771392 [TBL] [Abstract][Full Text] [Related]
5. Biophysics: water-repellent legs of water striders. Gao X; Jiang L Nature; 2004 Nov; 432(7013):36. PubMed ID: 15525973 [TBL] [Abstract][Full Text] [Related]
6. Nature's design of hierarchical superhydrophobic surfaces of a water strider for low adhesion and low-energy dissipation. Su Y; Ji B; Huang Y; Hwang KC Langmuir; 2010 Dec; 26(24):18926-37. PubMed ID: 21086997 [TBL] [Abstract][Full Text] [Related]
7. Wetting on nanoporous alumina surface: transition between Wenzel and Cassie states controlled by surface structure. Ran C; Ding G; Liu W; Deng Y; Hou W Langmuir; 2008 Sep; 24(18):9952-5. PubMed ID: 18702472 [TBL] [Abstract][Full Text] [Related]
8. Non-wetting wings and legs of the cranefly aided by fine structures of the cuticle. Hu HM; Watson GS; Cribb BW; Watson JA J Exp Biol; 2011 Mar; 214(Pt 6):915-20. PubMed ID: 21346118 [TBL] [Abstract][Full Text] [Related]
9. Wetting properties on nanostructured surfaces of cicada wings. Sun M; Watson GS; Zheng Y; Watson JA; Liang A J Exp Biol; 2009 Oct; 212(19):3148-55. PubMed ID: 19749108 [TBL] [Abstract][Full Text] [Related]
10. Modifying the anti-wetting property of butterfly wings and water strider legs by atomic layer deposition coating: surface materials versus geometry. Ding Y; Xu S; Zhang Y; Wang AC; Wang MH; Xiu Y; Wong CP; Wang ZL Nanotechnology; 2008 Sep; 19(35):355708. PubMed ID: 21828862 [TBL] [Abstract][Full Text] [Related]
11. Spatial variations and temporal metastability of the self-cleaning and superhydrophobic properties of damselfly wings. Hasan J; Webb HK; Truong VK; Watson GS; Watson JA; Tobin MJ; Gervinskas G; Juodkazis S; Wang JY; Crawford RJ; Ivanova EP Langmuir; 2012 Dec; 28(50):17404-9. PubMed ID: 23181510 [TBL] [Abstract][Full Text] [Related]
12. Nano to micro structural hierarchy is crucial for stable superhydrophobic and water-repellent surfaces. Su Y; Ji B; Zhang K; Gao H; Huang Y; Hwang K Langmuir; 2010 Apr; 26(7):4984-9. PubMed ID: 20092298 [TBL] [Abstract][Full Text] [Related]
14. Surface gradient material: from superhydrophobicity to superhydrophilicity. Yu X; Wang Z; Jiang Y; Zhang X Langmuir; 2006 May; 22(10):4483-6. PubMed ID: 16649753 [TBL] [Abstract][Full Text] [Related]
15. Video observation of surface exploration in cyprids of Balanus amphitrite: the movements of antennular sensory setae. Maruzzo D; Conlan S; Aldred N; Clare AS; Høeg JT Biofouling; 2011 Feb; 27(2):225-39. PubMed ID: 21302160 [TBL] [Abstract][Full Text] [Related]
16. Ultrastructure of tarsal sensilla and other integument structures of two Pseudocellus species (Ricinulei, Arachnida). Talarico G; Palacios-Vargas JG; Fuentes Silva M; Alberti G J Morphol; 2006 Apr; 267(4):441-63. PubMed ID: 16425267 [TBL] [Abstract][Full Text] [Related]
17. How micro/nanoarchitecture facilitates anti-wetting: an elegant hierarchical design on the termite wing. Watson GS; Cribb BW; Watson JA ACS Nano; 2010 Jan; 4(1):129-36. PubMed ID: 20099910 [TBL] [Abstract][Full Text] [Related]
18. The role of surface energy and water wettability in aminoalkyl/fluorocarbon/hydrocarbon-modified xerogel surfaces in the control of marine biofouling. Bennett SM; Finlay JA; Gunari N; Wells DD; Meyer AE; Walker GC; Callow ME; Callow JA; Bright FV; Detty MR Biofouling; 2010; 26(2):235-46. PubMed ID: 19960390 [TBL] [Abstract][Full Text] [Related]
19. Effect of various treatment and glazing (coating) techniques on the roughness and wettability of ceramic dental restorative surfaces. Aksoy G; Polat H; Polat M; Coskun G Colloids Surf B Biointerfaces; 2006 Dec; 53(2):254-9. PubMed ID: 17097279 [TBL] [Abstract][Full Text] [Related]
20. Nanostructure on taro leaves resists fouling by colloids and bacteria under submerged conditions. Ma J; Sun Y; Gleichauf K; Lou J; Li Q Langmuir; 2011 Aug; 27(16):10035-40. PubMed ID: 21736298 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]