BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 20417737)

  • 1. Experimental determination of the efficiency of nanostructuring on non-wetting legs of the water strider.
    Watson GS; Cribb BW; Watson JA
    Acta Biomater; 2010 Oct; 6(10):4060-4. PubMed ID: 20417737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superior water repellency of water strider legs with hierarchical structures: experiments and analysis.
    Feng XQ; Gao X; Wu Z; Jiang L; Zheng QS
    Langmuir; 2007 Apr; 23(9):4892-6. PubMed ID: 17385899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of micro/nano channel structuring in repelling water on cuticle arrays of the lacewing.
    Watson GS; Cribb BW; Watson JA
    J Struct Biol; 2010 Jul; 171(1):44-51. PubMed ID: 20347993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production and characterization of stable superhydrophobic surfaces based on copper hydroxide nanoneedles mimicking the legs of water striders.
    Wu X; Shi G
    J Phys Chem B; 2006 Jun; 110(23):11247-52. PubMed ID: 16771392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biophysics: water-repellent legs of water striders.
    Gao X; Jiang L
    Nature; 2004 Nov; 432(7013):36. PubMed ID: 15525973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nature's design of hierarchical superhydrophobic surfaces of a water strider for low adhesion and low-energy dissipation.
    Su Y; Ji B; Huang Y; Hwang KC
    Langmuir; 2010 Dec; 26(24):18926-37. PubMed ID: 21086997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wetting on nanoporous alumina surface: transition between Wenzel and Cassie states controlled by surface structure.
    Ran C; Ding G; Liu W; Deng Y; Hou W
    Langmuir; 2008 Sep; 24(18):9952-5. PubMed ID: 18702472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-wetting wings and legs of the cranefly aided by fine structures of the cuticle.
    Hu HM; Watson GS; Cribb BW; Watson JA
    J Exp Biol; 2011 Mar; 214(Pt 6):915-20. PubMed ID: 21346118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wetting properties on nanostructured surfaces of cicada wings.
    Sun M; Watson GS; Zheng Y; Watson JA; Liang A
    J Exp Biol; 2009 Oct; 212(19):3148-55. PubMed ID: 19749108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modifying the anti-wetting property of butterfly wings and water strider legs by atomic layer deposition coating: surface materials versus geometry.
    Ding Y; Xu S; Zhang Y; Wang AC; Wang MH; Xiu Y; Wong CP; Wang ZL
    Nanotechnology; 2008 Sep; 19(35):355708. PubMed ID: 21828862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial variations and temporal metastability of the self-cleaning and superhydrophobic properties of damselfly wings.
    Hasan J; Webb HK; Truong VK; Watson GS; Watson JA; Tobin MJ; Gervinskas G; Juodkazis S; Wang JY; Crawford RJ; Ivanova EP
    Langmuir; 2012 Dec; 28(50):17404-9. PubMed ID: 23181510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nano to micro structural hierarchy is crucial for stable superhydrophobic and water-repellent surfaces.
    Su Y; Ji B; Zhang K; Gao H; Huang Y; Hwang K
    Langmuir; 2010 Apr; 26(7):4984-9. PubMed ID: 20092298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Why do pigeon feathers repel water? Hydrophobicity of pennae, Cassie-Baxter wetting hypothesis and Cassie-Wenzel capillarity-induced wetting transition.
    Bormashenko E; Bormashenko Y; Stein T; Whyman G; Bormashenko E
    J Colloid Interface Sci; 2007 Jul; 311(1):212-6. PubMed ID: 17359990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface gradient material: from superhydrophobicity to superhydrophilicity.
    Yu X; Wang Z; Jiang Y; Zhang X
    Langmuir; 2006 May; 22(10):4483-6. PubMed ID: 16649753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Video observation of surface exploration in cyprids of Balanus amphitrite: the movements of antennular sensory setae.
    Maruzzo D; Conlan S; Aldred N; Clare AS; Høeg JT
    Biofouling; 2011 Feb; 27(2):225-39. PubMed ID: 21302160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrastructure of tarsal sensilla and other integument structures of two Pseudocellus species (Ricinulei, Arachnida).
    Talarico G; Palacios-Vargas JG; Fuentes Silva M; Alberti G
    J Morphol; 2006 Apr; 267(4):441-63. PubMed ID: 16425267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How micro/nanoarchitecture facilitates anti-wetting: an elegant hierarchical design on the termite wing.
    Watson GS; Cribb BW; Watson JA
    ACS Nano; 2010 Jan; 4(1):129-36. PubMed ID: 20099910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of surface energy and water wettability in aminoalkyl/fluorocarbon/hydrocarbon-modified xerogel surfaces in the control of marine biofouling.
    Bennett SM; Finlay JA; Gunari N; Wells DD; Meyer AE; Walker GC; Callow ME; Callow JA; Bright FV; Detty MR
    Biofouling; 2010; 26(2):235-46. PubMed ID: 19960390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of various treatment and glazing (coating) techniques on the roughness and wettability of ceramic dental restorative surfaces.
    Aksoy G; Polat H; Polat M; Coskun G
    Colloids Surf B Biointerfaces; 2006 Dec; 53(2):254-9. PubMed ID: 17097279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanostructure on taro leaves resists fouling by colloids and bacteria under submerged conditions.
    Ma J; Sun Y; Gleichauf K; Lou J; Li Q
    Langmuir; 2011 Aug; 27(16):10035-40. PubMed ID: 21736298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.