These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 20418009)

  • 1. Oxygen transport characterization of a human model of progressive hemorrhage.
    Ward KR; Tiba MH; Ryan KL; Torres Filho IP; Rickards CA; Witten T; Soller BR; Ludwig DA; Convertino VA
    Resuscitation; 2010 Aug; 81(8):987-93. PubMed ID: 20418009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of individual-specific progression to impending cardiovascular instability using arterial waveforms.
    Convertino VA; Grudic G; Mulligan J; Moulton S
    J Appl Physiol (1985); 2013 Oct; 115(8):1196-202. PubMed ID: 23928113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lightweight noninvasive trauma monitor for early indication of central hypovolemia and tissue acidosis: a review.
    Soller BR; Zou F; Ryan KL; Rickards CA; Ward K; Convertino VA
    J Trauma Acute Care Surg; 2012 Aug; 73(2 Suppl 1):S106-11. PubMed ID: 22847078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxygen saturation determined from deep muscle, not thenar tissue, is an early indicator of central hypovolemia in humans.
    Soller BR; Ryan KL; Rickards CA; Cooke WH; Yang Y; Soyemi OO; Crookes BA; Heard SO; Convertino VA
    Crit Care Med; 2008 Jan; 36(1):176-82. PubMed ID: 18090350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The physiology of blood loss and shock: New insights from a human laboratory model of hemorrhage.
    Schiller AM; Howard JT; Convertino VA
    Exp Biol Med (Maywood); 2017 Apr; 242(8):874-883. PubMed ID: 28346013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hyperventilation in response to progressive reduction in central blood volume to near syncope.
    Convertino VA; Rickards CA; Lurie KG; Ryan KL
    Aviat Space Environ Med; 2009 Dec; 80(12):1012-7. PubMed ID: 20027847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predictors of the Onset of Hemodynamic Decompensation During Progressive Central Hypovolemia: Comparison of the Peripheral Perfusion Index, Pulse Pressure Variability, and Compensatory Reserve Index.
    Janak JC; Howard JT; Goei KA; Weber R; Muniz GW; Hinojosa-Laborde C; Convertino VA
    Shock; 2015 Dec; 44(6):548-53. PubMed ID: 26529655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predictors of hemodynamic decompensation in progressive hypovolemia: Compensatory reserve versus heart rate variability.
    Schlotman TE; Suresh MR; Koons NJ; Howard JT; Schiller AM; Cardin S; Convertino VA
    J Trauma Acute Care Surg; 2020 Aug; 89(2S Suppl 2):S161-S168. PubMed ID: 32044875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cremaster muscle perfusion, oxygenation, and heterogeneity revealed by a new automated acquisition system in a rodent model of prolonged hemorrhagic shock.
    Torres Filho IP; Barraza D; Hildreth K; Williams C; Dubick MA
    J Appl Physiol (1985); 2019 Dec; 127(6):1548-1561. PubMed ID: 31670599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of compensatory reserve during lower-body negative pressure and hemorrhage in nonhuman primates.
    Hinojosa-Laborde C; Howard JT; Mulligan J; Grudic GZ; Convertino VA
    Am J Physiol Regul Integr Comp Physiol; 2016 Jun; 310(11):R1154-9. PubMed ID: 27030667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noninvasively determined muscle oxygen saturation is an early indicator of central hypovolemia in humans.
    Soller BR; Yang Y; Soyemi OO; Ryan KL; Rickards CA; Walz JM; Heard SO; Convertino VA
    J Appl Physiol (1985); 2008 Feb; 104(2):475-81. PubMed ID: 18006869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for misleading decision support in characterizing differences in tolerance to reduced central blood volume using measurements of tissue oxygenation.
    Schlotman TE; Akers KS; Cardin S; Morris MJ; Le T; Convertino VA
    Transfusion; 2020 Jun; 60 Suppl 3():S62-S69. PubMed ID: 32478865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of a computational platform for the analysis of the physiologic mechanisms of a human experimental model of hemorrhage.
    Summers RL; Ward KR; Witten T; Convertino VA; Ryan KL; Coleman TG; Hester RL
    Resuscitation; 2009 Dec; 80(12):1405-10. PubMed ID: 19804937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tracking central hypovolemia with ecg in humans: cautions for the use of heart period variability in patient monitoring.
    Ryan KL; Rickards CA; Ludwig DA; Convertino VA
    Shock; 2010 Jun; 33(6):583-9. PubMed ID: 19997052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validation of a novel index of hemorrhage using a lower body negative pressure shock model.
    Vettorello M; Sher S; Santambrogio S; Calini A; Tardini F; Lippi M; Fumagalli R
    Minerva Anestesiol; 2016 Aug; 82(8):839-49. PubMed ID: 26756378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peripheral perfusion index as an early predictor for central hypovolemia in awake healthy volunteers.
    van Genderen ME; Bartels SA; Lima A; Bezemer R; Ince C; Bakker J; van Bommel J
    Anesth Analg; 2013 Feb; 116(2):351-6. PubMed ID: 23302972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nociceptive somatic nerve stimulation and skeletal muscle injury modify systemic hemodynamics and oxygen transport and utilization after resuscitation from hemorrhage.
    Rady MY; Kirkman E; Cranley J; Little RA
    Crit Care Med; 1996 Apr; 24(4):623-30. PubMed ID: 8612414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of organ ischemia during hemorrhagic shock.
    Kvarstein G; Mirtaheri P; Tønnessen TI
    Acta Anaesthesiol Scand; 2003 Jul; 47(6):675-86. PubMed ID: 12803584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cerebral blood velocity regulation during progressive blood loss compared with lower body negative pressure in humans.
    Rickards CA; Johnson BD; Harvey RE; Convertino VA; Joyner MJ; Barnes JN
    J Appl Physiol (1985); 2015 Sep; 119(6):677-85. PubMed ID: 26139213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitric oxide-dependent modulation of sympathetic neural control of oxygenation in exercising human skeletal muscle.
    Chavoshan B; Sander M; Sybert TE; Hansen J; Victor RG; Thomas GD
    J Physiol; 2002 Apr; 540(Pt 1):377-86. PubMed ID: 11927694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.