BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 20418358)

  • 1. Predicting in vivo binding sites of RNA-binding proteins using mRNA secondary structure.
    Li X; Quon G; Lipshitz HD; Morris Q
    RNA; 2010 Jun; 16(6):1096-107. PubMed ID: 20418358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNAcontext: a new method for learning the sequence and structure binding preferences of RNA-binding proteins.
    Kazan H; Ray D; Chan ET; Hughes TR; Morris Q
    PLoS Comput Biol; 2010 Jul; 6(7):e1000832. PubMed ID: 20617199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conserved binding of GCAC motifs by MEC-8, couch potato, and the RBPMS protein family.
    Soufari H; Mackereth CD
    RNA; 2017 Mar; 23(3):308-316. PubMed ID: 28003515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissection of the target specificity of the RNA-binding protein HOW reveals dpp mRNA as a novel HOW target.
    Israeli D; Nir R; Volk T
    Development; 2007 Jun; 134(11):2107-14. PubMed ID: 17507411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational Identification of Post Translational Modification Regulated RNA Binding Protein Motifs.
    Brown AS; Mohanty BK; Howe PH
    PLoS One; 2015; 10(9):e0137696. PubMed ID: 26368004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finding the target sites of RNA-binding proteins.
    Li X; Kazan H; Lipshitz HD; Morris QD
    Wiley Interdiscip Rev RNA; 2014; 5(1):111-30. PubMed ID: 24217996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RBPDB: a database of RNA-binding specificities.
    Cook KB; Kazan H; Zuberi K; Morris Q; Hughes TR
    Nucleic Acids Res; 2011 Jan; 39(Database issue):D301-8. PubMed ID: 21036867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A deep learning framework for modeling structural features of RNA-binding protein targets.
    Zhang S; Zhou J; Hu H; Gong H; Chen L; Cheng C; Zeng J
    Nucleic Acids Res; 2016 Feb; 44(4):e32. PubMed ID: 26467480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A co-repressor assembly nucleated by Sex-lethal in the 3'UTR mediates translational control of Drosophila msl-2 mRNA.
    Grskovic M; Hentze MW; Gebauer F
    EMBO J; 2003 Oct; 22(20):5571-81. PubMed ID: 14532129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNA Bind-n-Seq: Measuring the Binding Affinity Landscape of RNA-Binding Proteins.
    Lambert NJ; Robertson AD; Burge CB
    Methods Enzymol; 2015; 558():465-493. PubMed ID: 26068750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In silico characterization and prediction of global protein-mRNA interactions in yeast.
    Pancaldi V; Bähler J
    Nucleic Acids Res; 2011 Aug; 39(14):5826-36. PubMed ID: 21459850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The STAR RNA binding proteins GLD-1, QKI, SAM68 and SLM-2 bind bipartite RNA motifs.
    Galarneau A; Richard S
    BMC Mol Biol; 2009 May; 10():47. PubMed ID: 19457263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diverse RNA-binding proteins interact with functionally related sets of RNAs, suggesting an extensive regulatory system.
    Hogan DJ; Riordan DP; Gerber AP; Herschlag D; Brown PO
    PLoS Biol; 2008 Oct; 6(10):e255. PubMed ID: 18959479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling the combined effect of RNA-binding proteins and microRNAs in post-transcriptional regulation.
    HafezQorani S; Lafzi A; de Bruin RG; van Zonneveld AJ; van der Veer EP; Son YA; Kazan H
    Nucleic Acids Res; 2016 May; 44(9):e83. PubMed ID: 26837572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functionally related transcripts have common RNA motifs for specific RNA-binding proteins in trypanosomes.
    Noé G; De Gaudenzi JG; Frasch AC
    BMC Mol Biol; 2008 Dec; 9():107. PubMed ID: 19063746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple RNA binding domains of Bruno confer recognition of diverse binding sites for translational repression.
    Reveal B; Garcia C; Ellington A; Macdonald PM
    RNA Biol; 2011; 8(6):1047-60. PubMed ID: 21955496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shared RNA-binding sites for interacting members of the Drosophila ELAV family of neuronal proteins.
    Borgeson CD; Samson ML
    Nucleic Acids Res; 2005; 33(19):6372-83. PubMed ID: 16282587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inferring RNA sequence preferences for poorly studied RNA-binding proteins based on co-evolution.
    Yang S; Wang J; Ng RT
    BMC Bioinformatics; 2018 Mar; 19(1):96. PubMed ID: 29529991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A combined sequence and structure based method for discovering enriched motifs in RNA from in vivo binding data.
    Polishchuk M; Paz I; Kohen R; Mesika R; Yakhini Z; Mandel-Gutfreund Y
    Methods; 2017 Apr; 118-119():73-81. PubMed ID: 28274760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The positional, structural, and sequence requirements of the Drosophila TLS RNA localization element.
    Cohen RS; Zhang S; Dollar GL
    RNA; 2005 Jul; 11(7):1017-29. PubMed ID: 15987813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.