BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 20418358)

  • 21. A repeated IMP-binding motif controls oskar mRNA translation and anchoring independently of Drosophila melanogaster IMP.
    Munro TP; Kwon S; Schnapp BJ; St Johnston D
    J Cell Biol; 2006 Feb; 172(4):577-88. PubMed ID: 16476777
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hyper conserved elements in vertebrate mRNA 3'-UTRs reveal a translational network of RNA-binding proteins controlled by HuR.
    Dassi E; Zuccotti P; Leo S; Provenzani A; Assfalg M; D'Onofrio M; Riva P; Quattrone A
    Nucleic Acids Res; 2013 Mar; 41(5):3201-16. PubMed ID: 23376935
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analysis of RBP Regulation and Co-regulation of mRNA 3' UTR Regions in a Luciferase Reporter System.
    Sternburg EL; Karginov FV
    Methods Mol Biol; 2021; 2170():101-115. PubMed ID: 32797453
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Finding RNA structure in the unstructured RBPome.
    Orenstein Y; Ohler U; Berger B
    BMC Genomics; 2018 Feb; 19(1):154. PubMed ID: 29463232
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis of CUGBP1 targets identifies GU-repeat sequences that mediate rapid mRNA decay.
    Rattenbacher B; Beisang D; Wiesner DL; Jeschke JC; von Hohenberg M; St Louis-Vlasova IA; Bohjanen PR
    Mol Cell Biol; 2010 Aug; 30(16):3970-80. PubMed ID: 20547756
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Highly accessible AU-rich regions in 3' untranslated regions are hotspots for binding of regulatory factors.
    Plass M; Rasmussen SH; Krogh A
    PLoS Comput Biol; 2017 Apr; 13(4):e1005460. PubMed ID: 28410363
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of cellular mRNA targets for RNA-binding protein Sam68.
    Itoh M; Haga I; Li QH; Fujisawa J
    Nucleic Acids Res; 2002 Dec; 30(24):5452-64. PubMed ID: 12490714
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A deep boosting based approach for capturing the sequence binding preferences of RNA-binding proteins from high-throughput CLIP-seq data.
    Li S; Dong F; Wu Y; Zhang S; Zhang C; Liu X; Jiang T; Zeng J
    Nucleic Acids Res; 2017 Aug; 45(14):e129. PubMed ID: 28575488
    [TBL] [Abstract][Full Text] [Related]  

  • 29. RNA sequence and secondary structure participate in high-affinity CsrA-RNA interaction.
    Dubey AK; Baker CS; Romeo T; Babitzke P
    RNA; 2005 Oct; 11(10):1579-87. PubMed ID: 16131593
    [TBL] [Abstract][Full Text] [Related]  

  • 30. RNA recognition via the SAM domain of Smaug.
    Green JB; Gardner CD; Wharton RP; Aggarwal AK
    Mol Cell; 2003 Jun; 11(6):1537-48. PubMed ID: 12820967
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of RNA cargoes by antibody-positioned RNA amplification.
    Miyashiro KY; Eberwine J
    Cold Spring Harb Protoc; 2015 May; 2015(5):434-41. PubMed ID: 25934929
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A large-scale binding and functional map of human RNA-binding proteins.
    Van Nostrand EL; Freese P; Pratt GA; Wang X; Wei X; Xiao R; Blue SM; Chen JY; Cody NAL; Dominguez D; Olson S; Sundararaman B; Zhan L; Bazile C; Bouvrette LPB; Bergalet J; Duff MO; Garcia KE; Gelboin-Burkhart C; Hochman M; Lambert NJ; Li H; McGurk MP; Nguyen TB; Palden T; Rabano I; Sathe S; Stanton R; Su A; Wang R; Yee BA; Zhou B; Louie AL; Aigner S; Fu XD; Lécuyer E; Burge CB; Graveley BR; Yeo GW
    Nature; 2020 Jul; 583(7818):711-719. PubMed ID: 32728246
    [TBL] [Abstract][Full Text] [Related]  

  • 33. PRIESSTESS: interpretable, high-performing models of the sequence and structure preferences of RNA-binding proteins.
    Laverty KU; Jolma A; Pour SE; Zheng H; Ray D; Morris Q; Hughes TR
    Nucleic Acids Res; 2022 Oct; 50(19):e111. PubMed ID: 36018788
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The regulatory impact of RNA-binding proteins on microRNA targeting.
    Kim S; Kim S; Chang HR; Kim D; Park J; Son N; Park J; Yoon M; Chae G; Kim YK; Kim VN; Kim YK; Nam JW; Shin C; Baek D
    Nat Commun; 2021 Aug; 12(1):5057. PubMed ID: 34417449
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dissecting the expression relationships between RNA-binding proteins and their cognate targets in eukaryotic post-transcriptional regulatory networks.
    Nishtala S; Neelamraju Y; Janga SC
    Sci Rep; 2016 May; 6():25711. PubMed ID: 27161996
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Combinatorial control of messenger RNAs by Pumilio, Nanos and Brain Tumor Proteins.
    Arvola RM; Weidmann CA; Tanaka Hall TM; Goldstrohm AC
    RNA Biol; 2017 Nov; 14(11):1445-1456. PubMed ID: 28318367
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An AU-rich sequence element (UUUN[A/U]U) downstream of the edited C in apolipoprotein B mRNA is a high-affinity binding site for Apobec-1: binding of Apobec-1 to this motif in the 3' untranslated region of c-myc increases mRNA stability.
    Anant S; Davidson NO
    Mol Cell Biol; 2000 Mar; 20(6):1982-92. PubMed ID: 10688645
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthetic antibodies as tools to probe RNA-binding protein function.
    Laver JD; Ancevicius K; Sollazzo P; Westwood JT; Sidhu SS; Lipshitz HD; Smibert CA
    Mol Biosyst; 2012 Jun; 8(6):1650-7. PubMed ID: 22481296
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ELAV multimerizes on conserved AU4-6 motifs important for ewg splicing regulation.
    Soller M; White K
    Mol Cell Biol; 2005 Sep; 25(17):7580-91. PubMed ID: 16107705
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynamic changes in RNA-protein interactions and RNA secondary structure in mammalian erythropoiesis.
    Shan M; Ji X; Janssen K; Silverman IM; Humenik J; Garcia BA; Liebhaber SA; Gregory BD
    Life Sci Alliance; 2021 Sep; 4(9):. PubMed ID: 34315813
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.