BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 20418444)

  • 41. A common inducer molecule enhances sugar utilization by Shewanella oneidensis MR-1.
    Gruenberg MC; TerAvest MA
    J Ind Microbiol Biotechnol; 2023 Feb; 50(1):. PubMed ID: 37537149
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Anaerobic reduction of 2,6-dinitrotoluene by Shewanella oneidensis MR-1: Roles of Mtr respiratory pathway and NfnB.
    Liu DF; Min D; Cheng L; Zhang F; Li DB; Xiao X; Sheng GP; Yu HQ
    Biotechnol Bioeng; 2017 Apr; 114(4):761-768. PubMed ID: 27869299
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Anaerobic regulation by an atypical Arc system in Shewanella oneidensis.
    Gralnick JA; Brown CT; Newman DK
    Mol Microbiol; 2005 Jun; 56(5):1347-57. PubMed ID: 15882425
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparisons of Shewanella strains based on genome annotations, modeling, and experiments.
    Ong WK; Vu TT; Lovendahl KN; Llull JM; Serres MH; Romine MF; Reed JL
    BMC Syst Biol; 2014 Mar; 8():31. PubMed ID: 24621294
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Posttranslational modification of flagellin FlaB in Shewanella oneidensis.
    Sun L; Jin M; Ding W; Yuan J; Kelly J; Gao H
    J Bacteriol; 2013 Jun; 195(11):2550-61. PubMed ID: 23543712
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Improvement of the electron transfer rate in Shewanella oneidensis MR-1 using a tailored periplasmic protein composition.
    Delgado VP; Paquete CM; Sturm G; Gescher J
    Bioelectrochemistry; 2019 Oct; 129():18-25. PubMed ID: 31075535
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Oxygen-dependent autoaggregation in Shewanella oneidensis MR-1.
    McLean JS; Pinchuk GE; Geydebrekht OV; Bilskis CL; Zakrajsek BA; Hill EA; Saffarini DA; Romine MF; Gorby YA; Fredrickson JK; Beliaev AS
    Environ Microbiol; 2008 Jul; 10(7):1861-76. PubMed ID: 18412550
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Transcriptomic and proteomic characterization of the Fur modulon in the metal-reducing bacterium Shewanella oneidensis.
    Wan XF; Verberkmoes NC; McCue LA; Stanek D; Connelly H; Hauser LJ; Wu L; Liu X; Yan T; Leaphart A; Hettich RL; Zhou J; Thompson DK
    J Bacteriol; 2004 Dec; 186(24):8385-400. PubMed ID: 15576789
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Identification and analysis of the Shewanella oneidensis major oxygen-independent coproporphyrinogen III oxidase gene.
    Al-Sheboul S; Saffarini D
    Anaerobe; 2011 Dec; 17(6):501-5. PubMed ID: 21726654
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enhancing Bidirectional Electron Transfer of Shewanella oneidensis by a Synthetic Flavin Pathway.
    Yang Y; Ding Y; Hu Y; Cao B; Rice SA; Kjelleberg S; Song H
    ACS Synth Biol; 2015 Jul; 4(7):815-23. PubMed ID: 25621739
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Probing regulon of ArcA in Shewanella oneidensis MR-1 by integrated genomic analyses.
    Gao H; Wang X; Yang ZK; Palzkill T; Zhou J
    BMC Genomics; 2008 Jan; 9():42. PubMed ID: 18221523
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Biodegradation of sulfonamides by Shewanella oneidensis MR-1 and Shewanella sp. strain MR-4.
    Mao F; Liu X; Wu K; Zhou C; Si Y
    Biodegradation; 2018 Apr; 29(2):129-140. PubMed ID: 29302823
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Structures of nitroaromatic compounds induce Shewanella oneidensis MR-1 to adopt different electron transport pathways to reduce the contaminants.
    Wang H; Zhao HP; Zhu L
    J Hazard Mater; 2020 Feb; 384():121495. PubMed ID: 31704119
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Anaerobic respiration of elemental sulfur and thiosulfate by Shewanella oneidensis MR-1 requires psrA, a homolog of the phsA gene of Salmonella enterica serovar typhimurium LT2.
    Burns JL; DiChristina TJ
    Appl Environ Microbiol; 2009 Aug; 75(16):5209-17. PubMed ID: 19542325
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Shewanella oneidensis MR-1 uses overlapping pathways for iron reduction at a distance and by direct contact under conditions relevant for Biofilms.
    Lies DP; Hernandez ME; Kappler A; Mielke RE; Gralnick JA; Newman DK
    Appl Environ Microbiol; 2005 Aug; 71(8):4414-26. PubMed ID: 16085832
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Engineering a Native Inducible Expression System in Shewanella oneidensis to Control Extracellular Electron Transfer.
    West EA; Jain A; Gralnick JA
    ACS Synth Biol; 2017 Sep; 6(9):1627-1634. PubMed ID: 28562022
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Linkage of Marine Bacterial Polyunsaturated Fatty Acid and Long-Chain Hydrocarbon Biosynthesis.
    Allemann MN; Shulse CN; Allen EE
    Front Microbiol; 2019; 10():702. PubMed ID: 31024488
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Enhancement of gaseous o-xylene degradation in a microbial fuel cell by adding Shewanella oneidensis MR-1.
    You J; Deng Y; Chen H; Ye J; Zhang S; Zhao J
    Chemosphere; 2020 Aug; 252():126571. PubMed ID: 32224361
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Binding of Shewanella FadR to the fabA fatty acid biosynthetic gene: implications for contraction of the fad regulon.
    Zhang H; Zheng B; Gao R; Feng Y
    Protein Cell; 2015 Sep; 6(9):667-679. PubMed ID: 26050090
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    Smith MD; Robinson SL; Molomjamts M; Wackett LP
    mBio; 2020 Mar; 11(2):. PubMed ID: 32156808
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.