These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 20418607)

  • 1. A gate-induced switch in zigzag graphene nanoribbons and charging effects.
    Cheraghchi H; Esmailzade H
    Nanotechnology; 2010 May; 21(20):205306. PubMed ID: 20418607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Negative differential resistance in oxidized zigzag graphene nanoribbons.
    Wang M; Li CM
    Phys Chem Chem Phys; 2011 Jan; 13(4):1413-8. PubMed ID: 21152514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-parameter charge pump in a zigzag graphene nanoribbon.
    Gu Y; Yang YH; Wang J; Chan KS
    J Phys Condens Matter; 2009 Oct; 21(40):405301. PubMed ID: 21832408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of defects on the conductance of graphene nanoribbons.
    Gorjizadeh N; Farajian AA; Kawazoe Y
    Nanotechnology; 2009 Jan; 20(1):015201. PubMed ID: 19417243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemically derived, ultrasmooth graphene nanoribbon semiconductors.
    Li X; Wang X; Zhang L; Lee S; Dai H
    Science; 2008 Feb; 319(5867):1229-32. PubMed ID: 18218865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Limited robustness of edge magnetism in zigzag graphene nanoribbons with electrodes.
    Krompiewski S
    Nanotechnology; 2014 Nov; 25(46):465201. PubMed ID: 25355693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Negative differential resistance devices by using N-doped graphene nanoribbons.
    Huang J; Wang W; Li Q; Yang J
    J Chem Phys; 2014 Apr; 140(16):164703. PubMed ID: 24784295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spin current pumped by a rotating magnetic field in zigzag graphene nanoribbons.
    Wang J; Chan KS
    J Phys Condens Matter; 2010 Nov; 22(44):445801. PubMed ID: 21403354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal transport by phonons in zigzag graphene nanoribbons with structural defects.
    Xie ZX; Chen KQ; Duan W
    J Phys Condens Matter; 2011 Aug; 23(31):315302. PubMed ID: 21772066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport properties of graphene nanoribbons with side-attached organicĀ molecules.
    Rosales L; Pacheco M; Barticevic Z; LatgƩ A; Orellana PA
    Nanotechnology; 2008 Feb; 19(6):065402. PubMed ID: 21730698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iron-phthalocyanine molecular junction with high spin filter efficiency and negative differential resistance.
    Huang J; Xu K; Lei S; Su H; Yang S; Li Q; Yang J
    J Chem Phys; 2012 Feb; 136(6):064707. PubMed ID: 22360215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spin-polarized electron transport through graphene nanoribbon with zigzag edges.
    Ding GH; Chan CT
    J Phys Condens Matter; 2011 May; 23(20):205304. PubMed ID: 21540508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intrinsic electronic and transport properties of graphyne sheets and nanoribbons.
    Wu W; Guo W; Zeng XC
    Nanoscale; 2013 Oct; 5(19):9264-76. PubMed ID: 23949158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electronic transport through side-contacted graphene nanoribbons: effects of overlap, aspect ratio and orientation.
    Krompiewski S
    Nanotechnology; 2011 Nov; 22(44):445201. PubMed ID: 21975438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular rectification in triangularly shaped graphene nanoribbons.
    Liu H; Wang H; Zhao J; Kiguchi M
    J Comput Chem; 2013 Feb; 34(5):360-5. PubMed ID: 23081769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electronic and magnetic properties of armchair and zigzag graphene nanoribbons.
    Owens FJ
    J Chem Phys; 2008 May; 128(19):194701. PubMed ID: 18500880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum transport through a graphene nanoribbon-superconductor junction.
    Sun QF; Xie XC
    J Phys Condens Matter; 2009 Aug; 21(34):344204. PubMed ID: 21715779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Half-metallicity in undoped and boron doped graphene nanoribbons in the presence of semilocal exchange-correlation interactions.
    Dutta S; Pati SK
    J Phys Chem B; 2008 Feb; 112(5):1333-5. PubMed ID: 18189386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bandgap engineering of zigzag graphene nanoribbons by manipulating edge states via defective boundaries.
    Zhang A; Wu Y; Ke SH; Feng YP; Zhang C
    Nanotechnology; 2011 Oct; 22(43):435702. PubMed ID: 21967829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Negative differential resistance in armchair silicene nanoribbons.
    Manjanath A; Roy A; Samanta A; Singh AK
    Nanotechnology; 2017 Jul; 28(27):275402. PubMed ID: 28557802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.