BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 20418759)

  • 1. Fluorescence in situ hybridization as a tool to characterize genetic alterations in pancreatic adenocarcinoma.
    Genevay M; Dumonceau JM; Pepey B; Pache JC; Rubbia-Brandt L; McKee TA
    Pancreas; 2010 May; 39(4):543-4. PubMed ID: 20418759
    [No Abstract]   [Full Text] [Related]  

  • 2. Chromosomal gains and genomic loss of p53 and p16 genes in Barrett's esophagus detected by fluorescence in situ hybridization of cytology specimens.
    Fahmy M; Skacel M; Gramlich TL; Brainard JA; Rice TW; Goldblum JR; Connor JT; Casey G; Legator MS; Tubbs RR; Falk GW
    Mod Pathol; 2004 May; 17(5):588-96. PubMed ID: 15017433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deletion of chromosomes 9p and 17 associated with abnormal expression of p53, p16/MTS1 and p15/MTS2 gene protein in hepatocellular carcinomas.
    Shao J; Li Y; Li H; Wu Q; Hou J; Liew C
    Chin Med J (Engl); 2000 Sep; 113(9):817-22. PubMed ID: 11776078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gains and amplifications of c-myc, EGFR, and 20.q13 loci in the no dysplasia-dysplasia-adenocarcinoma sequence of Barrett's esophagus.
    Rygiel AM; Milano F; Ten Kate FJ; Schaap A; Wang KK; Peppelenbosch MP; Bergman JJ; Krishnadath KK
    Cancer Epidemiol Biomarkers Prev; 2008 Jun; 17(6):1380-5. PubMed ID: 18559552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DCC and SMAD4 alterations in human colorectal and pancreatic tumor dissemination.
    Tarafa G; Villanueva A; Farré L; Rodríguez J; Musulén E; Reyes G; Seminago R; Olmedo E; Paules AB; Peinado MA; Bachs O; Capellá G
    Oncogene; 2000 Jan; 19(4):546-55. PubMed ID: 10698524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frequent amplification of 8q24, 11q, 17q, and 20q-specific genes in pancreatic cancer.
    Mahlamäki EH; Bärlund M; Tanner M; Gorunova L; Höglund M; Karhu R; Kallioniemi A
    Genes Chromosomes Cancer; 2002 Dec; 35(4):353-8. PubMed ID: 12378529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromogenic in situ hybridization analysis of chromosomes 7, 9, and 17 in pancreatic ductal adenocarcinoma based on tissue microarrays.
    Tsiambas E; Karameris A; Stamatelopoulos A; Baltayiannis N; Manaios L; Gerontopoulos K; Talieri M; Athanassiou AE; Patsouris E
    J BUON; 2006; 11(2):205-11. PubMed ID: 17318972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of neoplastic cell lineages in Barrett oesophagus.
    Barrett MT; Sanchez CA; Prevo LJ; Wong DJ; Galipeau PC; Paulson TG; Rabinovitch PS; Reid BJ
    Nat Genet; 1999 May; 22(1):106-9. PubMed ID: 10319873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AURKA amplification, chromosome instability, and centrosome abnormality in human pancreatic carcinoma cells.
    Zhu J; Abbruzzese JL; Izzo J; Hittelman WN; Li D
    Cancer Genet Cytogenet; 2005 May; 159(1):10-7. PubMed ID: 15860351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A molecularly genetic determination of prognostic factors of the prostate cancer and their relationships to expression of protein p27kip1.
    Dvorácková J; Uvírová M
    Neoplasma; 2007; 54(2):149-54. PubMed ID: 17319789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel candidate tumour suppressor gene loci on chromosomes 11q23-24 and 22q13 involved in human insulinoma tumourigenesis.
    Jonkers YM; Claessen SM; Feuth T; van Kessel AG; Ramaekers FC; Veltman JA; Speel EJ
    J Pathol; 2006 Dec; 210(4):450-8. PubMed ID: 17068744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tumor suppressor genes in the 9p21 gene cluster are selective targets of inactivation in neuroendocrine gastroenteropancreatic tumors.
    Lubomierski N; Kersting M; Bert T; Muench K; Wulbrand U; Schuermann M; Bartsch D; Simon B
    Cancer Res; 2001 Aug; 61(15):5905-10. PubMed ID: 11479232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interrelationships among chromosome aneuploidy, promoter hypermethylation, and protein expression of the CDKN2A gene in individuals from northern Brazil with gastric adenocarcinoma.
    Guimarães AC; Lima EM; Khayat AS; Girão Faria MH; Barem Rabenhorst SH; Pitombeira MV; Assumpção PP; de Oliveira Bahia M; Lima de Lima PD; de Arruda Cardoso Smith M; Burbano RR
    Cancer Genet Cytogenet; 2007 Nov; 179(1):45-51. PubMed ID: 17981214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of chromosomal anomalies and c-myc gene amplification in the cribriform pattern of prostatic intraepithelial neoplasia and carcinoma by fluorescence in situ hybridization.
    Qian J; Jenkins RB; Bostwick DG
    Mod Pathol; 1997 Nov; 10(11):1113-9. PubMed ID: 9388062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence in situ hybridization analysis of c-myc amplification in stage TNM prostate cancer in Japanese patients.
    Sato H; Minei S; Hachiya T; Yoshida T; Takimoto Y
    Int J Urol; 2006 Jun; 13(6):761-6. PubMed ID: 16834657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pancreatic tumours: molecular pathways implicated in ductal cancer are involved in ampullary but not in exocrine nonductal or endocrine tumorigenesis.
    Moore PS; Orlandini S; Zamboni G; Capelli P; Rigaud G; Falconi M; Bassi C; Lemoine NR; Scarpa A
    Br J Cancer; 2001 Jan; 84(2):253-62. PubMed ID: 11161385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immunohistochemical study of genetic alterations in intraductal and invasive ductal tumors of the pancreas.
    Islam HK; Fujioka Y; Tomidokoro T; Sugiura H; Takahashi T; Kondo S; Katoh H
    Hepatogastroenterology; 2001; 48(39):879-83. PubMed ID: 11462947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. c-MYC activation in primary and metastatic ductal adenocarcinoma of the pancreas: incidence, mechanisms, and clinical significance.
    Schleger C; Verbeke C; Hildenbrand R; Zentgraf H; Bleyl U
    Mod Pathol; 2002 Apr; 15(4):462-9. PubMed ID: 11950922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amplification of c-myc by fluorescence in situ hybridization in a population-based breast cancer tissue array.
    Rummukainen JK; Salminen T; Lundin J; Kytölä S; Joensuu H; Isola JJ
    Mod Pathol; 2001 Oct; 14(10):1030-5. PubMed ID: 11598174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromosomal instability in pancreatic ductal cells from patients with chronic pancreatitis and pancreatic adenocarcinoma.
    Moskovitz AH; Linford NJ; Brentnall TA; Bronner MP; Storer BE; Potter JD; Bell RH; Rabinovitch PS
    Genes Chromosomes Cancer; 2003 Jun; 37(2):201-6. PubMed ID: 12696069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.