BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 20419192)

  • 1. Microwave-induced plasma heating and synthesis: in situ temperature measurement of metal oxides and reactions to form ternary oxides.
    Chou YH; Morgan AJ; Hondow NS; Brydson R; Douthwaite RE
    Dalton Trans; 2010 Jul; 39(26):6062-6. PubMed ID: 20419192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microwave plasma synthesis of lanthanide zirconates from microwave transparent oxides.
    Chou YH; Hondow N; Thomas CI; Mitchell R; Brydson R; Douthwaite RE
    Dalton Trans; 2012 Feb; 41(8):2472-6. PubMed ID: 22215067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microwave dielectric heating of non-aqueous droplets in a microfluidic device for nanoparticle synthesis.
    Koziej D; Floryan C; Sperling RA; Ehrlicher AJ; Issadore D; Westervelt R; Weitz DA
    Nanoscale; 2013 Jun; 5(12):5468-75. PubMed ID: 23670701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature distributions within zeolite precursor solutions in the presence of microwaves.
    Gharibeh M; Tompsett G; Lu F; Auerbach SM; Yngvesson KS; Conner WC
    J Phys Chem B; 2009 Sep; 113(37):12506-20. PubMed ID: 19469480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microwave-induced plasma-promoted materials synthesis.
    Douthwaite RE
    Dalton Trans; 2007 Mar; (10):1002-5. PubMed ID: 17325774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microwave-assisted synthesis of sensitive silver substrate for surface-enhanced Raman scattering spectroscopy.
    Xia L; Wang H; Wang J; Gong K; Jia Y; Zhang H; Sun M
    J Chem Phys; 2008 Oct; 129(13):134703. PubMed ID: 19045112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microwave-enhanced reaction rates for nanoparticle synthesis.
    Gerbec JA; Magana D; Washington A; Strouse GF
    J Am Chem Soc; 2005 Nov; 127(45):15791-800. PubMed ID: 16277522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heating behavior and crystal growth mechanism in microwave field.
    Yang G; Kong Y; Hou W; Yan Q
    J Phys Chem B; 2005 Feb; 109(4):1371-9. PubMed ID: 16851105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ SAXS/WAXS of zeolite microwave synthesis: NaY, NaA, and beta zeolites.
    Panzarella B; Tompsett G; Conner WC; Jones K
    Chemphyschem; 2007 Feb; 8(3):357-69. PubMed ID: 17253593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microwave-assisted asymmetric organocatalysis. A probe for nonthermal microwave effects and the concept of simultaneous cooling.
    Hosseini M; Stiasni N; Barbieri V; Kappe CO
    J Org Chem; 2007 Feb; 72(4):1417-24. PubMed ID: 17288387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of microwave radiation on the growth of gold nanoparticles and microporous zincophosphates in a reverse micellar system.
    Doolittle JW; Dutta PK
    Langmuir; 2006 May; 22(10):4825-31. PubMed ID: 16649802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An investigation of wall effects in microwave-assisted ring-closing metathesis and cyclotrimerization reactions.
    Dallinger D; Irfan M; Suljanovic A; Kappe CO
    J Org Chem; 2010 Aug; 75(15):5278-88. PubMed ID: 20670032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasma-promoted dielectric heating in the microwave synthesis of spinels.
    Brooks DJ; Douthwaite RE; Gillie LJ
    Chem Commun (Camb); 2005 Oct; (38):4857-9. PubMed ID: 16193138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electromagnetic simulations of microwave heating experiments using reaction vessels made out of silicon carbide.
    Robinson J; Kingman S; Irvine D; Licence P; Smith A; Dimitrakis G; Obermayer D; Kappe CO
    Phys Chem Chem Phys; 2010 Sep; 12(36):10793-800. PubMed ID: 20625593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microwave heating of cooked pork patties as a function of fat content.
    Picouet PA; Fernández A; Serra X; Suñol JJ; Arnau J
    J Food Sci; 2007 Mar; 72(2):E57-63. PubMed ID: 17995834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating the existence of nonthermal/specific microwave effects using silicon carbide heating elements as power modulators.
    Razzaq T; Kremsner JM; Kappe CO
    J Org Chem; 2008 Aug; 73(16):6321-9. PubMed ID: 18613726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solid-phase synthesis of difficult peptide sequences at elevated temperatures: a critical comparison of microwave and conventional heating technologies.
    Bacsa B; Horváti K; Bõsze S; Andreae F; Kappe CO
    J Org Chem; 2008 Oct; 73(19):7532-42. PubMed ID: 18729524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of microwave power, metal oxides and metal salts on the pyrolysis of algae.
    Li L; Ma X; Xu Q; Hu Z
    Bioresour Technol; 2013 Aug; 142():469-74. PubMed ID: 23751487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonthermal microwave effects revisited: on the importance of internal temperature monitoring and agitation in microwave chemistry.
    Herrero MA; Kremsner JM; Kappe CO
    J Org Chem; 2008 Jan; 73(1):36-47. PubMed ID: 18062704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microwave-assisted cross-coupling and hydrogenation chemistry by using heterogeneous transition-metal catalysts: an evaluation of the role of selective catalyst heating.
    Irfan M; Fuchs M; Glasnov TN; Kappe CO
    Chemistry; 2009 Nov; 15(43):11608-18. PubMed ID: 19774573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.