These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 20419192)

  • 21. On the energy efficiency of microwave-assisted organic reactions.
    Razzaq T; Kappe CO
    ChemSusChem; 2008; 1(1-2):123-32. PubMed ID: 18605675
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Effect of high frequency treatment on several microorganisms important to food health].
    Rosenberg U; Sinell HJ
    Zentralbl Hyg Umweltmed; 1989 Jun; 188(3-4):271-83. PubMed ID: 2667555
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Changes in the dielectric properties of rat prostate ex vivo at 915 MHz during heating.
    Chin L; Sherar M
    Int J Hyperthermia; 2004 Aug; 20(5):517-27. PubMed ID: 15277024
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Investigation of the formation of CuInS2 nanoparticles by the oleylamine route: comparison of microwave-assisted and conventional syntheses.
    Pein A; Baghbanzadeh M; Rath T; Haas W; Maier E; Amenitsch H; Hofer F; Kappe CO; Trimmel G
    Inorg Chem; 2011 Jan; 50(1):193-200. PubMed ID: 21141832
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microwaves and sorption on oxides: a surface temperature investigation.
    Vallee SJ; Conner WC
    J Phys Chem B; 2006 Aug; 110(31):15459-70. PubMed ID: 16884268
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In situ investigation of thermally influenced phase transformations in (Pb 0.92 Sr 0.08)(Zr 0.65 Ti 0.35)O3 thin films using micro-Raman spectroscopy and X-ray diffraction.
    Sriram S; Bhaskaran M; Perova TS; Melnikov VA; Holland AS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Feb; 56(2):241-5. PubMed ID: 19251510
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The microwave heating mechanism of N-(4-methoxybenzyliden)-4-butylaniline in liquid crystalline and isotropic phases as determined using in situ microwave irradiation NMR spectroscopy.
    Tasei Y; Tanigawa F; Kawamura I; Fujito T; Sato M; Naito A
    Phys Chem Chem Phys; 2015 Apr; 17(14):9082-9. PubMed ID: 25752926
    [TBL] [Abstract][Full Text] [Related]  

  • 28. New automated microwave heating process for cooking and pasteurization of microwaveable foods containing raw meats.
    Huang L; Sites J
    J Food Sci; 2010 Mar; 75(2):E110-5. PubMed ID: 20492230
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Silicon carbide passive heating elements in microwave-assisted organic synthesis.
    Kremsner JM; Kappe CO
    J Org Chem; 2006 Jun; 71(12):4651-8. PubMed ID: 16749800
    [TBL] [Abstract][Full Text] [Related]  

  • 30. One-minute synthesis of crystalline binary and ternary metal oxide nanoparticles.
    Bilecka I; Djerdj I; Niederberger M
    Chem Commun (Camb); 2008 Feb; (7):886-8. PubMed ID: 18253537
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mathematical model of manganese ion catalyzed microwave deactivation of Enterococcus faecalis, Staphylococcus aureus and Escherichia coli.
    Benjamin E; Reznik A; Benjamin E; Williams AL
    Cell Mol Biol (Noisy-le-grand); 2007 May; 53(3):49-54. PubMed ID: 17531149
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Temperature-programmed microwave-assisted synthesis of SBA-15 ordered mesoporous silica.
    Celer EB; Jaroniec M
    J Am Chem Soc; 2006 Nov; 128(44):14408-14. PubMed ID: 17076515
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microwave synthesis of zeolites. 2. Effect of vessel size, precursor volume, and irradiation method.
    Panzarella B; Tompsett GA; Yngvesson KS; Conner WC
    J Phys Chem B; 2007 Nov; 111(44):12657-67. PubMed ID: 17939703
    [TBL] [Abstract][Full Text] [Related]  

  • 34. New insights into selective heterogeneous nucleation of metal nanoparticles on oxides by microwave-assisted reduction: rapid synthesis of high-activity supported catalysts.
    Anumol EA; Kundu P; Deshpande PA; Madras G; Ravishankar N
    ACS Nano; 2011 Oct; 5(10):8049-61. PubMed ID: 21888416
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microwave enhanced stabilization of heavy metal sludge.
    Hsieh CH; Lo SL; Chiueh PT; Kuan WH; Chen CL
    J Hazard Mater; 2007 Jan; 139(1):160-6. PubMed ID: 16863678
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microwave synthesis of zeolites: effect of power delivery.
    Gharibeh M; Tompsett GA; Yngvesson KS; Conner WC
    J Phys Chem B; 2009 Jul; 113(26):8930-40. PubMed ID: 19514706
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides.
    Kwon SG; Hyeon T
    Acc Chem Res; 2008 Dec; 41(12):1696-709. PubMed ID: 18681462
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A comparative study of acrylamide formation induced by microwave and conventional heating methods.
    Yuan Y; Chen F; Zhao GH; Liu J; Zhang HX; Hu XS
    J Food Sci; 2007 May; 72(4):C212-6. PubMed ID: 17995763
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microwave-assisted solid-phase peptide synthesis at 60 degrees C: alternative conditions with low enantiomerization.
    Loffredo C; Assunção NA; Gerhardt J; Miranda MT
    J Pept Sci; 2009 Dec; 15(12):808-17. PubMed ID: 19827081
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mathematical models for conventional and microwave thermal deactivation of Enterococcus faecalis, Staphylococcus aureus and Escherichia coli.
    Benjamin E; Reznik A; Benjamin E; Williams AL
    Cell Mol Biol (Noisy-le-grand); 2007 May; 53(3):42-8. PubMed ID: 17531148
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.