BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 20419238)

  • 1. Analysis of the cytochrome distribution via linear and nonlinear Raman spectroscopy.
    Walter A; Erdmann S; Bocklitz T; Jung EM; Vogler N; Akimov D; Dietzek B; Rösch P; Kothe E; Popp J
    Analyst; 2010 May; 135(5):908-17. PubMed ID: 20419238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of tip-localized mitochondria in hyphal growth.
    Levina NN; Lew RR
    Fungal Genet Biol; 2006 Feb; 43(2):65-74. PubMed ID: 16455272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparative Raman and CARS imaging study of colon tissue.
    Krafft C; Ramoji AA; Bielecki C; Vogler N; Meyer T; Akimov D; Rösch P; Schmitt M; Dietzek B; Petersen I; Stallmach A; Popp J
    J Biophotonics; 2009 May; 2(5):303-12. PubMed ID: 19434617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resonance Raman investigations of cytochrome c conformational change upon interaction with the membranes of intact and Ca2+-exposed mitochondria.
    Berezhna S; Wohlrab H; Champion PM
    Biochemistry; 2003 May; 42(20):6149-58. PubMed ID: 12755617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resonance Raman quantification of the redox state of cytochromes b and c in-vivo and in-vitro.
    Kakita M; Kaliaperumal V; Hamaguchi HO
    J Biophotonics; 2012 Jan; 5(1):20-4. PubMed ID: 22076935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Apical localization of actin patches and vacuolar dynamics in Ashbya gossypii depend on the WASP homolog Wal1p.
    Walther A; Wendland J
    J Cell Sci; 2004 Oct; 117(Pt 21):4947-58. PubMed ID: 15367585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxygen flux magnitude and location along growing hyphae of Neurospora crassa.
    Lew RR; Levina NN
    FEMS Microbiol Lett; 2004 Apr; 233(1):125-30. PubMed ID: 15043878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid Raman-fluorescence microscopy on single cells using quantum dots.
    van Manen HJ; Otto C
    Methods Mol Biol; 2011; 680():45-60. PubMed ID: 21153372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resonance Raman imaging of the NADPH oxidase subunit cytochrome b558 in single neutrophilic granulocytes.
    van Manen HJ; Uzunbajakava N; van Bruggen R; Roos D; Otto C
    J Am Chem Soc; 2003 Oct; 125(40):12112-3. PubMed ID: 14518995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular-level investigation of the structure, transformation, and bioactivity of single living fission yeast cells by time- and space-resolved Raman spectroscopy.
    Huang YS; Karashima T; Yamamoto M; Hamaguchi HO
    Biochemistry; 2005 Aug; 44(30):10009-19. PubMed ID: 16042377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ectopic expression of a constitutively active Cdc42 small GTPase alters the morphology of haploid and dikaryotic hyphae in the filamentous homobasidiomycete Schizophyllum commune.
    Weber M; Salo V; Uuskallio M; Raudaskoski M
    Fungal Genet Biol; 2005 Jul; 42(7):624-37. PubMed ID: 15896990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ mapping of nitrifiers and anammox bacteria in microbial aggregates by means of confocal resonance Raman microscopy.
    Pätzold R; Keuntje M; Theophile K; Müller J; Mielcarek E; Ngezahayo A; Anders-von Ahlften A
    J Microbiol Methods; 2008 Mar; 72(3):241-8. PubMed ID: 18255179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatially resolved investigation of the oil composition in single intact hyphae of Mortierella spp. with micro-Raman spectroscopy.
    Münchberg U; Wagner L; Spielberg ET; Voigt K; Rösch P; Popp J
    Biochim Biophys Acta; 2013 Feb; 1831(2):341-9. PubMed ID: 23032786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Label-free biochemical imaging of heart tissue with high-speed spontaneous Raman microscopy.
    Ogawa M; Harada Y; Yamaoka Y; Fujita K; Yaku H; Takamatsu T
    Biochem Biophys Res Commun; 2009 May; 382(2):370-4. PubMed ID: 19285035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Paxillin-like protein AgPxl1 is required for apical branching and maximal hyphal growth in A.gossypii.
    Knechtle P; Kaufmann A; Cavicchioli D; Philippsen P
    Fungal Genet Biol; 2008 Jun; 45(6):829-38. PubMed ID: 18448364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping of redox state of mitochondrial cytochromes in live cardiomyocytes using Raman microspectroscopy.
    Brazhe NA; Treiman M; Brazhe AR; Find NL; Maksimov GV; Sosnovtseva OV
    PLoS One; 2012; 7(9):e41990. PubMed ID: 22957018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ UV resonance Raman micro-spectroscopic localization of the antimalarial quinine in cinchona bark.
    Frosch T; Schmitt M; Popp J
    J Phys Chem B; 2007 Apr; 111(16):4171-7. PubMed ID: 17394302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spitzenkörper, vacuoles, ring-like structures, and mitochondria of Phanerochaete velutina hyphal tips visualized with carboxy-DFFDA, CMAC and DiOC6(3).
    Zhuang X; Tlalka M; Davies DS; Allaway WG; Watkinson SC; Ashford AE
    Mycol Res; 2009 Apr; 113(Pt 4):417-31. PubMed ID: 19114102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electron-transfer processes of cytochrome C at interfaces. New insights by surface-enhanced resonance Raman spectroscopy.
    Murgida DH; Hildebrandt P
    Acc Chem Res; 2004 Nov; 37(11):854-61. PubMed ID: 15612675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasensitive in situ tracing of the alkaloid dioncophylline A in the tropical liana Triphyophyllum peltatum by applying deep-UV resonance Raman microscopy.
    Frosch T; Schmitt M; Noll T; Bringmann G; Schenzel K; Popp J
    Anal Chem; 2007 Feb; 79(3):986-93. PubMed ID: 17263326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.