These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 20419257)

  • 41. Asymmetric electrowetting--moving droplets by a square wave.
    Fan SK; Yang H; Wang TT; Hsu W
    Lab Chip; 2007 Oct; 7(10):1330-5. PubMed ID: 17896018
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Electrochemical impedance spectroscopy investigations of a microelectrode behavior in a thin-layer cell: Experimental and theoretical studies.
    Gabrielli C; Keddam M; Portail N; Rousseau P; Takenouti H; Vivier V
    J Phys Chem B; 2006 Oct; 110(41):20478-85. PubMed ID: 17034233
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Electrophoresis in microfabricated devices using photopolymerized polyacrylamide gels and electrode-defined sample injection.
    Brahmasandra SN; Ugaz VM; Burke DT; Mastroangelo CH; Burns MA
    Electrophoresis; 2001 Jan; 22(2):300-11. PubMed ID: 11288898
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hydrodynamic electrochemistry: design for a high-speed rotating disk electrode.
    Banks CE; Simm AO; Bowler R; Dawes K; Compton RG
    Anal Chem; 2005 Mar; 77(6):1928-30. PubMed ID: 15762607
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Theory of Frequency-Dependent Polarization of General Planar Electrodes with Zeta Potentials of Arbitrary Magnitude in Ionic Media.
    Scott M; Paul R; Kaler KV
    J Colloid Interface Sci; 2000 Oct; 230(2):388-395. PubMed ID: 11017747
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Dependence of apparent resistance of four-electrode probes on insertion depth.
    Tsai JZ; Cao H; Tungjitkusolmun S; Woo EJ; Vorperian VR; Webster JG
    IEEE Trans Biomed Eng; 2000 Jan; 47(1):41-8. PubMed ID: 10646278
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Highly selective amperometric glucose microdevice derived from diffusion layer gap electrode.
    Jia WZ; Hu YL; Song YY; Wang K; Xia XH
    Biosens Bioelectron; 2008 Jan; 23(6):892-8. PubMed ID: 18029169
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A simulation study evaluating the performance of high-density electrode arrays on myocardial tissue.
    Eason JC; Malkin RA
    IEEE Trans Biomed Eng; 2000 Jul; 47(7):893-901. PubMed ID: 10916260
    [TBL] [Abstract][Full Text] [Related]  

  • 49. FDTD simulations to assess the performance of CFMA-434 applicators for superficial hyperthermia.
    Kok HP; De Greef M; Correia D; Vörding PJ; Van Stam G; Gelvich EA; Bel A; Crezee J
    Int J Hyperthermia; 2009; 25(6):462-76. PubMed ID: 19657850
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparison of voltammetric data obtained for the trans-[Mn(CN)(CO)2[P(OPh)3](Ph2PCH2PPh2)]0/+ process in BMIM.PF6 ionic liquid under microchemical and conventional conditions.
    Zhang J; Bond AM
    Anal Chem; 2003 Dec; 75(24):6938-48. PubMed ID: 14670056
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Electrochemical performance of diamond thin-film electrodes from different commercial sources.
    Fischer AE; Show Y; Swain GM
    Anal Chem; 2004 May; 76(9):2553-60. PubMed ID: 15117197
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Design of electrode array for impedance measurement of lesions in arteries.
    Cho S; Thielecke H
    Physiol Meas; 2005 Apr; 26(2):S19-26. PubMed ID: 15798232
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A systematic study of the influence of nanoelectrode dimensions on electrode performance and the implications for electroanalysis and sensing.
    Schmueser I; Walton AJ; Terry JG; Woodvine HL; Freeman NJ; Mount AR
    Faraday Discuss; 2013; 164():295-314. PubMed ID: 24466671
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Design and Finite Element Model of a Microfluidic Platform with Removable Electrodes for Electrochemical Analysis.
    Molina DE; Medina AS; Beyenal H; Ivory CF
    J Electrochem Soc; 2019; 166(2):B125-B132. PubMed ID: 31341328
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Microelectrode Array with Reproducible Performance Shows Loss of Consistency Following Functionalization with a Self-Assembled 6-Mercapto-1-hexanol Layer.
    Corrigan DK; Vezza V; Schulze H; Bachmann TT; Mount AR; Walton AJ; Terry JG
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29890722
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The development and characterisation of square microfabricated electrode systems.
    Woodvine HL; Terry JG; Walton AJ; Mount AR
    Analyst; 2010 May; 135(5):1058-65. PubMed ID: 20419257
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Microfluidic biofuel cells: the influence of electrode diffusion layer on performance.
    Lim KG; Palmore GT
    Biosens Bioelectron; 2007 Jan; 22(6):941-7. PubMed ID: 16753293
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An iridium oxide reference electrode for use in microfabricated biosensors and biochips.
    Yang H; Kang SK; Choi CA; Kim H; Shin DH; Kim YS; Kim YT
    Lab Chip; 2004 Feb; 4(1):42-6. PubMed ID: 15007439
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Enhanced electroanalysis in lithium potassium eutectic (LKE) using microfabricated square microelectrodes.
    Corrigan DK; Blair EO; Terry JG; Walton AJ; Mount AR
    Anal Chem; 2014 Nov; 86(22):11342-8. PubMed ID: 25284431
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.