BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 20419283)

  • 1. Penetration of the blood-brain barrier by Staphylococcus aureus: contribution of membrane-anchored lipoteichoic acid.
    Sheen TR; Ebrahimi CM; Hiemstra IH; Barlow SB; Peschel A; Doran KS
    J Mol Med (Berl); 2010 Jun; 88(6):633-9. PubMed ID: 20419283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blood-brain barrier invasion by group B Streptococcus depends upon proper cell-surface anchoring of lipoteichoic acid.
    Doran KS; Engelson EJ; Khosravi A; Maisey HC; Fedtke I; Equils O; Michelsen KS; Arditi M; Peschel A; Nizet V
    J Clin Invest; 2005 Sep; 115(9):2499-507. PubMed ID: 16138192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosynthesis of the glycolipid anchor in lipoteichoic acid of Staphylococcus aureus RN4220: role of YpfP, the diglucosyldiacylglycerol synthase.
    Kiriukhin MY; Debabov DV; Shinabarger DL; Neuhaus FC
    J Bacteriol; 2001 Jun; 183(11):3506-14. PubMed ID: 11344159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tet38 of Staphylococcus aureus Binds to Host Cell Receptor Complex CD36-Toll-Like Receptor 2 and Protects from Teichoic Acid Synthesis Inhibitors Tunicamycin and Congo Red.
    Truong-Bolduc QC; Wang Y; Hooper DC
    Infect Immun; 2019 Jul; 87(7):. PubMed ID: 31010815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genes required for glycolipid synthesis and lipoteichoic acid anchoring in Staphylococcus aureus.
    Gründling A; Schneewind O
    J Bacteriol; 2007 Mar; 189(6):2521-30. PubMed ID: 17209021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Auxiliary role for D-alanylated wall teichoic acid in Toll-like receptor 2-mediated survival of Staphylococcus aureus in macrophages.
    Shiratsuchi A; Shimizu K; Watanabe I; Hashimoto Y; Kurokawa K; Razanajatovo IM; Park KH; Park HK; Lee BL; Sekimizu K; Nakanishi Y
    Immunology; 2010 Feb; 129(2):268-77. PubMed ID: 19845797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inactivation of the Monofunctional Peptidoglycan Glycosyltransferase SgtB Allows
    Karinou E; Schuster CF; Pazos M; Vollmer W; Gründling A
    J Bacteriol; 2019 Jan; 201(1):. PubMed ID: 30322854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Staphylococcus aureus Lipoteichoic Acid Damages the Skin Barrier through an IL-1-Mediated Pathway.
    Brauweiler AM; Goleva E; Leung DYM
    J Invest Dermatol; 2019 Aug; 139(8):1753-1761.e4. PubMed ID: 30779913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The function of CozE proteins is linked to lipoteichoic acid biosynthesis in
    Barbuti MD; Lambert E; Myrbråten IS; Ducret A; Stamsås GA; Wilhelm L; Liu X; Salehian Z; Veening J-W; Straume D; Grangeasse C; Perez C; Kjos M
    mBio; 2024 Jun; 15(6):e0115724. PubMed ID: 38757970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Salt-Induced Stress Stimulates a Lipoteichoic Acid-Specific Three-Component Glycosylation System in Staphylococcus aureus.
    Kho K; Meredith TC
    J Bacteriol; 2018 Jun; 200(12):. PubMed ID: 29632092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Processing of LtaS restricts LTA assembly and YSIRK preprotein trafficking into
    Ibrahim AM; Azam MS; Schneewind O; Missiakas D
    mBio; 2024 Feb; 15(2):e0285223. PubMed ID: 38174934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The immune evasion protein Sbi of Staphylococcus aureus occurs both extracellularly and anchored to the cell envelope by binding lipoteichoic acid.
    Smith EJ; Corrigan RM; van der Sluis T; Gründling A; Speziale P; Geoghegan JA; Foster TJ
    Mol Microbiol; 2012 Feb; 83(4):789-804. PubMed ID: 22256861
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Staphylococcus aureus aggregation in the plasma fraction of silkworm hemolymph.
    Ryuno H; Nigo F; Naguro I; Sekimizu K; Kaito C
    PLoS One; 2019; 14(5):e0217517. PubMed ID: 31145754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential effects of antibiotics on neutrophils exposed to lipoteichoic acid derived from Staphylococcus aureus.
    Algorri M; Wong-Beringer A
    Ann Clin Microbiol Antimicrob; 2020 Nov; 19(1):50. PubMed ID: 33143710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Staphylococcus aureus ypfP mutant with strongly reduced lipoteichoic acid (LTA) content: LTA governs bacterial surface properties and autolysin activity.
    Fedtke I; Mader D; Kohler T; Moll H; Nicholson G; Biswas R; Henseler K; Götz F; Zähringer U; Peschel A
    Mol Microbiol; 2007 Aug; 65(4):1078-91. PubMed ID: 17640274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The cell envelope of Staphylococcus aureus selectively controls the sorting of virulence factors.
    Zheng X; Marsman G; Lacey KA; Chapman JR; Goosmann C; Ueberheide BM; Torres VJ
    Nat Commun; 2021 Oct; 12(1):6193. PubMed ID: 34702812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Triton X-100-induced lipoteichoic acid release is correlated with the methicillin resistance in Staphylococcus aureus.
    Ohta K; Komatsuzawa H; Sugai M; Suginaka H
    FEMS Microbiol Lett; 2000 Jan; 182(1):77-9. PubMed ID: 10612735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crucial Role for Lipoteichoic Acid Assembly in the Metabolic Versatility and Antibiotic Resistance of Staphylococcus aureus.
    Burtchett TA; Shook JC; Hesse LE; Delekta PC; Brzozowski RS; Nouri A; Calas AJ; Spanoudis CM; Eswara PJ; Hammer ND
    Infect Immun; 2023 Jul; 91(7):e0055022. PubMed ID: 37347167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A partial reconstitution implicates DltD in catalyzing lipoteichoic acid d-alanylation.
    Wood BM; Santa Maria JP; Matano LM; Vickery CR; Walker S
    J Biol Chem; 2018 Nov; 293(46):17985-17996. PubMed ID: 30237166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The wall teichoic acid and lipoteichoic acid polymers of Staphylococcus aureus.
    Xia G; Kohler T; Peschel A
    Int J Med Microbiol; 2010 Feb; 300(2-3):148-54. PubMed ID: 19896895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.