These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 20419406)
1. In vivo analysis of protein translocation to the Escherichia coli periplasm. Belin D Methods Mol Biol; 2010; 619():103-16. PubMed ID: 20419406 [TBL] [Abstract][Full Text] [Related]
2. Characterization of the type III export signal of the flagellar hook scaffolding protein FlgD of Escherichia coli. Weber-Sparenberg C; Pöplau P; Brookman H; Rochón M; Möckel C; Nietschke M; Jung H Arch Microbiol; 2006 Oct; 186(4):307-16. PubMed ID: 16897036 [TBL] [Abstract][Full Text] [Related]
3. Signal peptidase I-mediated processing of an engineered mammalian cytochrome b(5) precursor is an exocytoplasmic post-translocational event in Escherichia coli. Kaderbhai NN; Harding V; Kaderbhai MA Mol Membr Biol; 2008 Aug; 25(5):388-99. PubMed ID: 18651317 [TBL] [Abstract][Full Text] [Related]
4. Amino-terminal charge affects the periplasmic accumulation of recombinant heregulin/EGF hybrids exported using the Escherichia coli alkaline phosphatase signal sequence. Campion SR; Elsasser E; Chung R Protein Expr Purif; 1997 Aug; 10(3):331-9. PubMed ID: 9268680 [TBL] [Abstract][Full Text] [Related]
5. A novel class of secA alleles that exert a signal-sequence-dependent effect on protein export in Escherichia coli. Khatib K; Belin D Genetics; 2002 Nov; 162(3):1031-43. PubMed ID: 12454053 [TBL] [Abstract][Full Text] [Related]
6. YidC-dependent translocation of green fluorescence protein fused to the FliP cleavable signal peptide. Pradel N; Decorps A; Ye C; Santini CL; Wu LF Biochimie; 2005 Feb; 87(2):191-6. PubMed ID: 15760712 [TBL] [Abstract][Full Text] [Related]
7. Formation of active inclusion bodies in the periplasm of Escherichia coli. Arié JP; Miot M; Sassoon N; Betton JM Mol Microbiol; 2006 Oct; 62(2):427-37. PubMed ID: 17020581 [TBL] [Abstract][Full Text] [Related]
8. The DsbA signal sequence directs efficient, cotranslational export of passenger proteins to the Escherichia coli periplasm via the signal recognition particle pathway. Schierle CF; Berkmen M; Huber D; Kumamoto C; Boyd D; Beckwith J J Bacteriol; 2003 Oct; 185(19):5706-13. PubMed ID: 13129941 [TBL] [Abstract][Full Text] [Related]
9. Targeting of active human cytochrome P4501A1 (CYP1A1) to the periplasmic space of Escherichia coli. Kaderbhai MA; Ugochukwu CC; Lamb DC; Kelly SL Biochem Biophys Res Commun; 2000 Dec; 279(3):803-7. PubMed ID: 11162432 [TBL] [Abstract][Full Text] [Related]
10. Targeting of signal sequenceless proteins for export in Escherichia coli with altered protein translocase. Prinz WA; Spiess C; Ehrmann M; Schierle C; Beckwith J EMBO J; 1996 Oct; 15(19):5209-17. PubMed ID: 8895566 [TBL] [Abstract][Full Text] [Related]
11. Coupling between codon usage, translation and protein export in Escherichia coli. Zalucki YM; Beacham IR; Jennings MP Biotechnol J; 2011 Jun; 6(6):660-7. PubMed ID: 21567959 [TBL] [Abstract][Full Text] [Related]
12. Signal sequence and alanine-rich region of streptococcal protein antigen A of Streptococcus sobrinus can direct localization of alkaline phosphatase to the periplasm of Escherichia coli. Holt RG; Raju L FEMS Microbiol Lett; 2000 Mar; 184(1):17-21. PubMed ID: 10689159 [TBL] [Abstract][Full Text] [Related]
13. Use of thioredoxin as a reporter to identify a subset of Escherichia coli signal sequences that promote signal recognition particle-dependent translocation. Huber D; Boyd D; Xia Y; Olma MH; Gerstein M; Beckwith J J Bacteriol; 2005 May; 187(9):2983-91. PubMed ID: 15838024 [TBL] [Abstract][Full Text] [Related]
14. Requirement for the COOH-terminal pro-sequence in the translocation of aqualysin I across the cytoplasmic membrane in Escherichia coli. Kim DW; Matsuzawa H Biochem Biophys Res Commun; 2000 Oct; 277(1):216-20. PubMed ID: 11027666 [TBL] [Abstract][Full Text] [Related]
15. Both transmembrane domains of SecG contribute to signal sequence recognition by the Escherichia coli protein export machinery. Bost S; Silva F; Rudaz C; Belin D Mol Microbiol; 2000 Nov; 38(3):575-87. PubMed ID: 11069681 [TBL] [Abstract][Full Text] [Related]
16. Effect of folding factors in rescuing unstable heterologous lipase B to enhance its overexpression in the periplasm of Escherichia coli. Xu Y; Lewis D; Chou CP Appl Microbiol Biotechnol; 2008 Jul; 79(6):1035-44. PubMed ID: 18496685 [TBL] [Abstract][Full Text] [Related]
17. Biased codon usage in signal peptides: a role in protein export. Zalucki YM; Beacham IR; Jennings MP Trends Microbiol; 2009 Apr; 17(4):146-50. PubMed ID: 19307122 [TBL] [Abstract][Full Text] [Related]
18. Transport of heterologous proteins to the periplasmic space of Pseudomonas fluorescens using a variety of native signal sequences. Retallack DM; Schneider JC; Mitchell J; Chew L; Liu H Biotechnol Lett; 2007 Oct; 29(10):1483-91. PubMed ID: 17541504 [TBL] [Abstract][Full Text] [Related]
19. Escherichia coli SecG is required for residual export mediated by mutant signal sequences and for SecY-SecE complex stability. Belin D; Plaia G; Boulfekhar Y; Silva F J Bacteriol; 2015 Feb; 197(3):542-52. PubMed ID: 25404704 [TBL] [Abstract][Full Text] [Related]
20. Juxtaposition of signal-peptide charge and core region hydrophobicity is critical for functional signal peptides. Rusch SL; Mascolo CL; Kebir MO; Kendall DA Arch Microbiol; 2002 Oct; 178(4):306-10. PubMed ID: 12209265 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]