BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 204195)

  • 1. Energy relationships between cytosolic metabolism and mitochondrial respiration in rat heart.
    Nishiki K; Erecińska M; Wilson DF
    Am J Physiol; 1978 Mar; 234(3):C73-81. PubMed ID: 204195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytosolic adenylates and adenosine release in perfused working heart. Comparison of whole tissue with cytosolic non-aqueous fractionation analyses.
    Bünger R; Soboll S
    Eur J Biochem; 1986 Aug; 159(1):203-13. PubMed ID: 3091368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of substrate on mitochondrial NADH, cytosolic redox state, and phosphorylated compounds in isolated hearts.
    Scholz TD; Laughlin MR; Balaban RS; Kupriyanov VV; Heineman FW
    Am J Physiol; 1995 Jan; 268(1 Pt 2):H82-91. PubMed ID: 7840306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of oxidative phosphorylation in hearts from euthyroid, hypothyroid, and hyperthyroid rats.
    Nishiki K; Erecińska M; Wilson DF; Cooper S
    Am J Physiol; 1978 Nov; 235(5):C212-9. PubMed ID: 215035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differences in nucleotide compartmentation and energy state in isolated and in situ rat heart: assessment by 31P-NMR spectroscopy.
    Williams JP; Headrick JP
    Biochim Biophys Acta; 1996 Aug; 1276(1):71-9. PubMed ID: 8764892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Respiratory control in isolated perfused rat heart. Role of the equilibrium relations between the mitochondrial electron carriers and the adenylate system.
    Hassinen IE; Hiltunen K
    Biochim Biophys Acta; 1975 Dec; 408(3):319-30. PubMed ID: 172132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compartmentation of adenine nucleotides in the isolated working guinea pig heart stimulated by noradrenaline.
    Soboll S; Bünger R
    Hoppe Seylers Z Physiol Chem; 1981 Feb; 362(2):125-32. PubMed ID: 7216167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cardiac contractile function, oxygen consumption rate and cytosolic phosphates during inhibition of electron flux by amytal--a 31P-NMR study.
    Kupriyanov VV; Lakomkin VL; Korchazhkina OV; Stepanov VA; Steinschneider AYa ; Kapelko VI
    Biochim Biophys Acta; 1991 Jul; 1058(3):386-99. PubMed ID: 2065062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of tissue acidosis to ischemic injury in the perfused rat heart.
    Williamson JR; Schaffer SW; Ford C; Safer B
    Circulation; 1976 Mar; 53(3 Suppl):I3-14. PubMed ID: 3293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial respiratory control in the myocardium.
    Hassinen IE
    Biochim Biophys Acta; 1986; 853(2):135-51. PubMed ID: 3548825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of oxidative metabolism in volume-overloaded rat hearts: effects of different lipid substrates.
    Ben Cheikh R; Guendouz A; Moravec J
    Am J Physiol; 1994 May; 266(5 Pt 2):H2090-7. PubMed ID: 8203607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cardiac nucleotide levels and mitochondrial respiration in copper-deficient rats.
    Chao JC; Medeiros DM; Altschuld RA; Hohl CM
    Comp Biochem Physiol Comp Physiol; 1993 Jan; 104(1):163-8. PubMed ID: 8094656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of cardiac work on electrical potential gradient across mitochondrial membrane in perfused rat hearts.
    Wan B; Doumen C; Duszynski J; Salama G; Vary TC; LaNoue KF
    Am J Physiol; 1993 Aug; 265(2 Pt 2):H453-60. PubMed ID: 8368348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substrate dependence of metabolic state and coronary flow in perfused rat heart.
    Starnes JW; Wilson DF; Erecińska M
    Am J Physiol; 1985 Oct; 249(4 Pt 2):H799-806. PubMed ID: 4051017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subcellular metabolite concentrations. Dependence of mitochondrial and cytosolic ATP systems on the metabolic state of perfused rat liver.
    Soboll S; Scholz R; Heldt HW
    Eur J Biochem; 1978 Jun; 87(2):377-90. PubMed ID: 668699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Respiratory control and the integration of heart high-energy phosphate metabolism by mitochondrial creatine kinase.
    Jacobus WE
    Annu Rev Physiol; 1985; 47():707-25. PubMed ID: 3888084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioenergetics and control of oxygen consumption in the in situ rat heart.
    Headrick JP; Dobson GP; Williams JP; McKirdy JC; Jordan L; Willis RJ
    Am J Physiol; 1994 Sep; 267(3 Pt 2):H1074-84. PubMed ID: 8092272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compartmentation of high-energy phosphates in resting and beating heart cells.
    Arrio-Dupont M; De Nay D
    Biochim Biophys Acta; 1986 Sep; 851(2):249-56. PubMed ID: 3488761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protective effect of urinary trypsin inhibitor on myocardial mitochondria during hemorrhagic shock and reperfusion.
    Masuda T; Sato K; Noda C; Ikeda KM; Matsunaga A; Ogura MN; Shimizu K; Nagasawa H; Matsuyama N; Izumi T
    Crit Care Med; 2003 Jul; 31(7):1987-92. PubMed ID: 12847393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphate free perfusion prevents washout of tissue creatine in Langendorff perfused rabbit heart.
    Gitomer WL; Franco-Cabrera BD; Storey CJ
    Biochem Int; 1992 Mar; 26(4):637-44. PubMed ID: 1610372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.