BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

51 related articles for article (PubMed ID: 20419705)

  • 1. Microfluidic-SERS devices for one shot limit-of-detection.
    Kim D; Campos AR; Datt A; Gao Z; Rycenga M; Burrows ND; Greeneltch NG; Mirkin CA; Murphy CJ; Van Duyne RP; Haynes CL
    Analyst; 2014 Jul; 139(13):3227-3234. PubMed ID: 24756225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of SERS tag intensity, binding footprint, and emittance.
    Nolan JP; Duggan E; Condello D
    Bioconjug Chem; 2014 Jul; 25(7):1233-42. PubMed ID: 24892497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced on-chip SERS based biomolecular detection using electrokinetically active microwells.
    Huh YS; Chung AJ; Cordovez B; Erickson D
    Lab Chip; 2009 Feb; 9(3):433-9. PubMed ID: 19156293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D Printed Microfluidic Device for Magnetic Trapping and SERS Quantitative Evaluation of Environmental and Biomedical Analytes.
    Litti L; Trivini S; Ferraro D; Reguera J
    ACS Appl Mater Interfaces; 2021 Jul; 13(29):34752-34761. PubMed ID: 34256559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile fabrication of microfluidic surface-enhanced Raman scattering devices via lift-up lithography.
    Wu Y; Jiang Y; Zheng X; Jia S; Zhu Z; Ren B; Ma H
    R Soc Open Sci; 2018 Apr; 5(4):172034. PubMed ID: 29765657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microsphere lens array embedded microfluidic chip for SERS detection with simultaneous enhancement of sensitivity and stability.
    Dong Z; Liu X; Zhou S; Zhu Y; Chen J; Liu Y; Ren X; Lu YQ; Xiao R; Wang G
    Biosens Bioelectron; 2024 Jun; 261():116505. PubMed ID: 38885536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel Digital SERS-Microfluidic Chip for Rapid and Accurate Quantification of Microorganisms.
    Wen P; Yang F; Zhao H; Xu Y; Li S; Chen L
    Anal Chem; 2024 Jan; 96(4):1454-1461. PubMed ID: 38224075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A SERS-assisted 3D organotypic microfluidic chip for in-situ visualization and monitoring breast cancer extravasation process.
    Qian Z; Wang Z; Zhu K; Yang K; Wu L; Zong S; Wang Z
    Talanta; 2024 Apr; 270():125633. PubMed ID: 38199123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gap-enhanced gold nanodumbbells with single-particle surface-enhanced Raman scattering sensitivity.
    Cheng R; Jia D; Du Z; Cheng JX; Yang C
    RSC Adv; 2023 Sep; 13(39):27321-27332. PubMed ID: 37711380
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increasing gold nanostars SERS response with silver shells: a surface-based seed-growth approach.
    Parmigiani M; Schifano V; Taglietti A; Galinetto P; Albini B
    Nanotechnology; 2024 Feb; 35(19):. PubMed ID: 38306966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A dielectrophoretic chip with a roughened metal surface for on-chip surface-enhanced Raman scattering analysis of bacteria.
    Cheng IF; Lin CC; Lin DY; Chang HC
    Biomicrofluidics; 2010 Aug; 4(3):. PubMed ID: 20806000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SERS-active gold lace nanoshells with built-in hotspots.
    Yang M; Alvarez-Puebla R; Kim HS; Aldeanueva-Potel P; Liz-Marzán LM; Kotov NA
    Nano Lett; 2010 Oct; 10(10):4013-9. PubMed ID: 20738117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ analysis of dynamic laminar flow extraction using surface-enhanced Raman spectroscopy.
    Wang F; Wang HL; Qiu Y; Chang YL; Long YT
    Sci Rep; 2015 Dec; 5():18698. PubMed ID: 26687436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micro-flow cell washing technique combined with single-cell Raman spectroscopy for rapid and automatic antimicrobial susceptibility test of pathogen in urine.
    Zhao L; Jiang Z; Wang J; Wang X; Zhang Z; Hu H; Qi X; Zeng H; Song Y
    Talanta; 2024 Jun; 277():126354. PubMed ID: 38850804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polystyrene microspheres with ultra-rough surfaces engineered using RIE technique and applied using SERS.
    Song J; Feng S; Shi H; Han D; Liu G
    Chem Commun (Camb); 2024 Feb; 60(18):2493-2496. PubMed ID: 38305898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Suspension arrays based on nanoparticle-encoded microspheres for high-throughput multiplexed detection.
    Leng Y; Sun K; Chen X; Li W
    Chem Soc Rev; 2015 Aug; 44(15):5552-95. PubMed ID: 26021602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SERS decoding of micro gold shells moving in microfluidic systems.
    Lee S; Joo S; Park S; Kim S; Kim HC; Chung TD
    Electrophoresis; 2010 May; 31(10):1623-9. PubMed ID: 20419705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single gold microshell tailored to sensitive surface enhanced Raman scattering probe.
    Piao L; Park S; Lee HB; Kim K; Kim J; Chung TD
    Anal Chem; 2010 Jan; 82(1):447-51. PubMed ID: 19994858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic fabrication of SERS-active microspheres for molecular detection.
    Hwang H; Kim SH; Yang SM
    Lab Chip; 2011 Jan; 11(1):87-92. PubMed ID: 20959939
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.