These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 20420453)

  • 61. Perspective on dirhodium carboxamidates as catalysts.
    Doyle MP
    J Org Chem; 2006 Dec; 71(25):9253-60. PubMed ID: 17137350
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Complete and selective nitration of tyrosine residue in peptides caused by ultraviolet matrix-assisted laser desorption/ionization.
    Takayama M
    Photochem Photobiol Sci; 2023 Mar; 22(3):687-692. PubMed ID: 36352303
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Molecular recognition in protein modification with rhodium metallopeptides.
    Ball ZT
    Curr Opin Chem Biol; 2015 Apr; 25():98-102. PubMed ID: 25588960
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A Hexa-rhodium Metallopeptide Catalyst for Site-Specific Functionalization of Natural Antibodies.
    Ohata J; Ball ZT
    J Am Chem Soc; 2017 Sep; 139(36):12617-12622. PubMed ID: 28810739
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Chemical Posttranslational Modification with Designed Rhodium(II) Catalysts.
    Martin SC; Minus MB; Ball ZT
    Methods Enzymol; 2016; 580():1-19. PubMed ID: 27586326
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Design and high-resolution structure of a β³-peptide bundle catalyst.
    Wang PS; Nguyen JB; Schepartz A
    J Am Chem Soc; 2014 May; 136(19):6810-3. PubMed ID: 24802883
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Site-specific modification of de novo designed coiled-coil polypeptides with inorganic redox complexes.
    Fedorova A; Ogawa MY
    Bioconjug Chem; 2002; 13(1):150-4. PubMed ID: 11792191
    [TBL] [Abstract][Full Text] [Related]  

  • 68. DNA-catalyzed covalent modification of amino acid side chains in tethered and free peptide substrates.
    Wong OY; Pradeepkumar PI; Silverman SK
    Biochemistry; 2011 May; 50(21):4741-9. PubMed ID: 21510668
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Assessing histidine tags for recruiting deoxyribozymes to catalyze peptide and protein modification reactions.
    Chu CC; Silverman SK
    Org Biomol Chem; 2016 May; 14(20):4697-703. PubMed ID: 27138704
    [TBL] [Abstract][Full Text] [Related]  

  • 70. DNA-Catalyzed Introduction of Azide at Tyrosine for Peptide Modification.
    Wang P; Silverman SK
    Angew Chem Int Ed Engl; 2016 Aug; 55(34):10052-6. PubMed ID: 27391404
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Substrate selectivity analyses of factor inhibiting hypoxia-inducible factor.
    Yang M; Hardy AP; Chowdhury R; Loik ND; Scotti JS; McCullagh JS; Claridge TD; McDonough MA; Ge W; Schofield CJ
    Angew Chem Int Ed Engl; 2013 Feb; 52(6):1700-4. PubMed ID: 23296631
    [No Abstract]   [Full Text] [Related]  

  • 72. The application of perfluoroheteroaromatic reagents in the preparation of modified peptide systems.
    Gimenez D; Mooney CA; Dose A; Sandford G; Coxon CR; Cobb SL
    Org Biomol Chem; 2017 May; 15(19):4086-4095. PubMed ID: 28470238
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Computational Mapping of Dirhodium(II) Catalysts.
    Green AI; Tinworth CP; Warriner S; Nelson A; Fey N
    Chemistry; 2021 Feb; 27(7):2402-2409. PubMed ID: 32964545
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A Catch-and-Release Approach to Selective Modification of Accessible Tyrosine Residues.
    Allan C; Kosar M; Burr CV; Mackay CL; Duncan RR; Hulme AN
    Chembiochem; 2018 Dec; 19(23):2443-2447. PubMed ID: 30212615
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Site-selective nitrenoid insertions utilizing postfunctionalized bifunctional rhodium(ii) catalysts.
    Berndt JP; Radchenko Y; Becker J; Logemann C; Bhandari DR; Hrdina R; Schreiner PR
    Chem Sci; 2019 Mar; 10(11):3324-3329. PubMed ID: 30996919
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Destruction of phenylalanine and tyrosine during the anodic oxidation of C-terminal residues in acyl peptides.
    THOMPSON AR
    Biochim Biophys Acta; 1954 Oct; 15(2):299. PubMed ID: 13208701
    [No Abstract]   [Full Text] [Related]  

  • 77. Chemical pyrophosphorylation of functionally diverse peptides.
    Marmelstein AM; Yates LM; Conway JH; Fiedler D
    J Am Chem Soc; 2014 Jan; 136(1):108-11. PubMed ID: 24350643
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Oxidative cyclization reagents reveal tryptophan cation-π interactions.
    Xie X; Moon PJ; Crossley SWM; Bischoff AJ; He D; Li G; Dao N; Gonzalez-Valero A; Reeves AG; McKenna JM; Elledge SK; Wells JA; Toste FD; Chang CJ
    Nature; 2024 Mar; 627(8004):680-687. PubMed ID: 38448587
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Copper assisted sequence-specific chemical protein conjugation at a single backbone amide.
    Guo M; Zhao K; Guo L; Zhou R; He Q; Lu K; Li T; Liu D; Chen J; Tang J; Fu X; Zhou J; Zheng B; Mann SI; Zhang Y; Huang J; Yang B; Zhou T; Lei Y; Dang B
    Nat Commun; 2023 Dec; 14(1):8063. PubMed ID: 38052794
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Chemoselective Late-Stage Functionalization of Peptides via Photocatalytic C2-Alkylation of Tryptophan.
    Lee JC; Cuthbertson JD; Mitchell NJ
    Org Lett; 2023 Jul; 25(29):5459-5464. PubMed ID: 37462428
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.