These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 20420519)

  • 1. Protein engineering in the development of functional hydrogels.
    Banta S; Wheeldon IR; Blenner M
    Annu Rev Biomed Eng; 2010 Aug; 12():167-86. PubMed ID: 20420519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic biomaterials: engineering organophosphate hydrolase to form self-assembling enzymatic hydrogels.
    Lu HD; Wheeldon IR; Banta S
    Protein Eng Des Sel; 2010 Jul; 23(7):559-66. PubMed ID: 20457694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioelectrocatalytic hydrogels from electron-conducting metallopolypeptides coassembled with bifunctional enzymatic building blocks.
    Wheeldon IR; Gallaway JW; Barton SC; Banta S
    Proc Natl Acad Sci U S A; 2008 Oct; 105(40):15275-80. PubMed ID: 18824691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Building fibrous biomaterials from alpha-helical and collagen-like coiled-coil peptides.
    Woolfson DN
    Biopolymers; 2010; 94(1):118-27. PubMed ID: 20091877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elastin-like polypeptides: biomedical applications of tunable biopolymers.
    MacEwan SR; Chilkoti A
    Biopolymers; 2010; 94(1):60-77. PubMed ID: 20091871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elastin-Based Rubber-Like Hydrogels.
    Desai MS; Wang E; Joyner K; Chung TW; Jin HE; Lee SW
    Biomacromolecules; 2016 Jul; 17(7):2409-16. PubMed ID: 27257908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physical hydrogels photo-cross-linked from self-assembled macromers for potential use in tissue engineering.
    Liu B; Lewis AK; Shen W
    Biomacromolecules; 2009 Dec; 10(12):3182-7. PubMed ID: 19919071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peptide-based and polypeptide-based hydrogels for drug delivery and tissue engineering.
    Altunbas A; Pochan DJ
    Top Curr Chem; 2012; 310():135-67. PubMed ID: 21809190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene-based materials functionalized with elastin-like polypeptides.
    Wang E; Desai MS; Heo K; Lee SW
    Langmuir; 2014 Mar; 30(8):2223-9. PubMed ID: 24512378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tandem modular protein-based hydrogels constructed using a novel two-component approach.
    Lv S; Cao Y; Li H
    Langmuir; 2012 Jan; 28(4):2269-74. PubMed ID: 22085110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanobiotechnological approach to engineered biomaterial design: the example of elastin-like polymers.
    Rodríguez-Cabello JC; Prieto S; Arias FJ; Reguera J; Ribeiro A
    Nanomedicine (Lond); 2006 Oct; 1(3):267-80. PubMed ID: 17716158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reversible hydrogels from self-assembling genetically engineered protein block copolymers.
    Xu C; Breedveld V; Kopecek J
    Biomacromolecules; 2005; 6(3):1739-49. PubMed ID: 15877401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic engineering of self-assembled protein hydrogel based on elastin-like sequences with metal binding functionality.
    Lao UL; Sun M; Matsumoto M; Mulchandani A; Chen W
    Biomacromolecules; 2007 Dec; 8(12):3736-9. PubMed ID: 18039006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trends in the design and use of elastin-like recombinamers as biomaterials.
    Ibáñez-Fonseca A; Flora T; Acosta S; Rodríguez-Cabello JC
    Matrix Biol; 2019 Nov; 84():111-126. PubMed ID: 31288085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amphiphilic Elastin-Like Block Co-Recombinamers Containing Leucine Zippers: Cooperative Interplay between Both Domains Results in Injectable and Stable Hydrogels.
    Fernández-Colino A; Arias FJ; Alonso M; Rodríguez-Cabello JC
    Biomacromolecules; 2015 Oct; 16(10):3389-98. PubMed ID: 26391850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent Advances in Elastin-Based Biomaterial.
    Del Prado Audelo ML; Mendoza-Muñoz N; Escutia-Guadarrama L; Giraldo-Gomez D; González-Torres M; Florán B; Cortés H; Leyva-Gomez G
    J Pharm Pharm Sci; 2020; 23():314-332. PubMed ID: 33751927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and bioproduction of a recombinant multi(bio)functional elastin-like protein polymer containing cell adhesion sequences for tissue engineering purposes.
    Girotti A; Reguera J; Rodríguez-Cabello JC; Arias FJ; Alonso M; Matestera A
    J Mater Sci Mater Med; 2004 Apr; 15(4):479-84. PubMed ID: 15332621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New materials from proteins and peptides.
    Grove TZ; Regan L
    Curr Opin Struct Biol; 2012 Aug; 22(4):451-6. PubMed ID: 22832173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Secondary structure formation and LCST behavior of short elastin-like peptides.
    Nuhn H; Klok HA
    Biomacromolecules; 2008 Oct; 9(10):2755-63. PubMed ID: 18754687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biocompatible elastin-like click gels: design, synthesis and characterization.
    Testera AM; Girotti A; de Torre IG; Quintanilla L; Santos M; Alonso M; Rodríguez-Cabello JC
    J Mater Sci Mater Med; 2015 Feb; 26(2):105. PubMed ID: 25663022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.