These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 20420557)

  • 1. Laser direct writing of micro- and nano-scale medical devices.
    Gittard SD; Narayan RJ
    Expert Rev Med Devices; 2010 May; 7(3):343-56. PubMed ID: 20420557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laser micro machining of medical devices.
    Rausch Y
    Med Device Technol; 2009; 20(3):29-33. PubMed ID: 19626953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micro- and nanotechnology fabrication processes for metals.
    Wilkinson JM
    Med Device Technol; 2004 Jun; 15(5):21-3. PubMed ID: 15285483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laser Direct Writing of Dual-Scale 3D Structures for Cell Repelling at High Cellular Density.
    Paun IA; Calin BS; Popescu RC; Tanasa E; Moldovan A
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Review on Stimuli-Actuated 3D Micro/Nanostructures for Tissue Engineering and the Potential of Laser-Direct Writing via Two-Photon Polymerization for Structure Fabrication.
    Calin BS; Paun IA
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ investigation of the shrinkage of photopolymerized micro/nanostructures: the effect of the drying process.
    Sun Q; Ueno K; Misawa H
    Opt Lett; 2012 Feb; 37(4):710-2. PubMed ID: 22344156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid Prototyping of Polymeric Nanopillars by 3D Direct Laser Writing for Controlling Cell Behavior.
    Buch-Månson N; Spangenberg A; Gomez LPC; Malval JP; Soppera O; Martinez KL
    Sci Rep; 2017 Aug; 7(1):9247. PubMed ID: 28835653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laser direct writing using submicron-diameter fibers.
    Tian F; Yang G; Bai J; Xu J; Hou C; Liang Y; Wang K
    Opt Express; 2009 Oct; 17(22):19960-8. PubMed ID: 19997220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Medical nanotechnology: how small can we go?
    Williams D
    Med Device Technol; 2002 Apr; 13(3):7-9. PubMed ID: 12030106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration.
    Liao Y; Cheng Y; Liu C; Song J; He F; Shen Y; Chen D; Xu Z; Fan Z; Wei X; Sugioka K; Midorikawa K
    Lab Chip; 2013 Apr; 13(8):1626-31. PubMed ID: 23463190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A method to fabricate disconnected silver nanostructures in 3D.
    Vora K; Kang S; Mazur E
    J Vis Exp; 2012 Nov; (69):e4399. PubMed ID: 23222551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultraprecision machining.
    Dinesen PG; Rasmussen JB; Holme C; Johansen M
    Med Device Technol; 2004 May; 15(4):48. PubMed ID: 15303566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maskless fabrication of nano-fluidic channels by two-photon absorption (TPA) polymerization of SU-8 on glass substrate.
    Venkatakrishnan K; Jariwala S; Tan B
    Opt Express; 2009 Feb; 17(4):2756-62. PubMed ID: 19219180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional printing of interconnects by laser direct-write of silver nanopastes.
    Wang J; Auyeung RC; Kim H; Charipar NA; Piqué A
    Adv Mater; 2010 Oct; 22(40):4462-6. PubMed ID: 20818617
    [No Abstract]   [Full Text] [Related]  

  • 15. Nanostructuring of organic-inorganic hybrid materials for distributed feedback laser resonators by two-photon polymerization.
    Woggon T; Kleiner T; Punke M; Lemmer U
    Opt Express; 2009 Feb; 17(4):2500-7. PubMed ID: 19219153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Femtosecond laser rapid prototyping of nanoshells and suspending components towards microfluidic devices.
    Wu D; Chen QD; Niu LG; Wang JN; Wang J; Wang R; Xia H; Sun HB
    Lab Chip; 2009 Aug; 9(16):2391-4. PubMed ID: 19636471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid fabrication of 3D terahertz split ring resonator arrays by novel single-shot direct write focused proximity field nanopatterning.
    Singer JP; Lee JH; Kooi SE; Thomas EL
    Opt Express; 2012 May; 20(10):11097-108. PubMed ID: 22565733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Femtosecond versus picosecond laser machining of nano-gratings and micro-channels in silica glass.
    Corbari C; Champion A; Gecevičius M; Beresna M; Bellouard Y; Kazansky PG
    Opt Express; 2013 Feb; 21(4):3946-58. PubMed ID: 23481930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-photosensitive resin for super-resolution direct-laser-writing based on photoinhibited polymerization.
    Cao Y; Gan Z; Jia B; Evans RA; Gu M
    Opt Express; 2011 Sep; 19(20):19486-94. PubMed ID: 21996889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator.
    Gittard SD; Nguyen A; Obata K; Koroleva A; Narayan RJ; Chichkov BN
    Biomed Opt Express; 2011 Nov; 2(11):3167-78. PubMed ID: 22076276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.