These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 20421123)

  • 41. Reinforcement of carboxyl groups in the surface of Corynebacterium glutamicum biomass for effective removal of basic dyes.
    Won SW; Vijayaraghavan K; Mao J; Kim S; Yun YS
    Bioresour Technol; 2009 Dec; 100(24):6301-6. PubMed ID: 19692228
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of adsorption interferents on removal of Reactive Red 195 dye in wastewater by chitosan.
    Wen YZ; Liu WQ; Fang ZH; Liu WP
    J Environ Sci (China); 2005; 17(5):766-9. PubMed ID: 16312999
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Application of 'waste' wood-shaving bottom ash for adsorption of azo reactive dye.
    Leechart P; Nakbanpote W; Thiravetyan P
    J Environ Manage; 2009 Feb; 90(2):912-20. PubMed ID: 18436367
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Azo dye treatment with simultaneous electricity production in an anaerobic-aerobic sequential reactor and microbial fuel cell coupled system.
    Li Z; Zhang X; Lin J; Han S; Lei L
    Bioresour Technol; 2010 Jun; 101(12):4440-5. PubMed ID: 20188540
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Some properties of a sequencing batch reactor system for removal of vat dyes.
    Sirianuntapiboon S; Chairattanawan K; Jungphungsukpanich S
    Bioresour Technol; 2006 Jul; 97(10):1243-52. PubMed ID: 16023339
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of pH on the binding mechanisms in biosorption of Reactive Orange 16 by Corynebacterium glutamicum.
    Won SW; Yun HJ; Yun YS
    J Colloid Interface Sci; 2009 Mar; 331(1):83-9. PubMed ID: 19062035
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Biosorption of reactive dye using acid-treated rice husk: factorial design analysis.
    Ponnusami V; Krithika V; Madhuram R; Srivastava SN
    J Hazard Mater; 2007 Apr; 142(1-2):397-403. PubMed ID: 17011118
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ultrastructural localization of heavy metals in the extraradical mycelium and spores of the arbuscular mycorrhizal fungus Glomus intraradices.
    González-Guerrero M; Melville LH; Ferrol N; Lott JN; Azcón-Aguilar C; Peterson RL
    Can J Microbiol; 2008 Feb; 54(2):103-10. PubMed ID: 18388979
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Bioaccumulation of copper by Trichoderma viride.
    Anand P; Isar J; Saran S; Saxena RK
    Bioresour Technol; 2006 May; 97(8):1018-25. PubMed ID: 16324839
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Remediation of textile dye waste water using a white-rot fungus Bjerkandera adusta through solid-state fermentation (SSF).
    Robinson T; Nigam PS
    Appl Biochem Biotechnol; 2008 Dec; 151(2-3):618-28. PubMed ID: 18496771
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Adsorptive removal of textile dyes from aqueous solutions by dead fungal biomass.
    Asma D; Kahraman S; Cing S; Yesilada O
    J Basic Microbiol; 2006; 46(1):3-9. PubMed ID: 16463316
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Investigation of the sorption mechanisms of metal-complexed dye onto Posidonia oceanica (L.) fibres through kinetic modelling analysis.
    Ncibi MC; Mahjoub B; Seffen M
    Bioresour Technol; 2008 Sep; 99(13):5582-9. PubMed ID: 18055197
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evaluation of diclofenac biodegradation by the ascomycete fungus Penicillium oxalicum at flask and bench bioreactor scales.
    Olicón-Hernández DR; Camacho-Morales RL; Pozo C; González-López J; Aranda E
    Sci Total Environ; 2019 Apr; 662():607-614. PubMed ID: 30699381
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Microflora involved in textile dye waste removal.
    Abd El-Rahim WM; Moawad H; Khalafallah M
    J Basic Microbiol; 2003; 43(3):167-74. PubMed ID: 12761767
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Utilization of modified silk cotton hull waste as an adsorbent for the removal of textile dye (reactive blue MR) from aqueous solution.
    Thangamani KS; Sathishkumar M; Sameena Y; Vennilamani N; Kadirvelu K; Pattabhi S; Yun SE
    Bioresour Technol; 2007 Apr; 98(6):1265-9. PubMed ID: 16831547
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dye decolorization by manganese peroxidase in an enzymatic membrane bioreactor.
    López C; Moreira MT; Feijoo G; Lema JM
    Biotechnol Prog; 2004; 20(1):74-81. PubMed ID: 14763826
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Immobilization of Trichoderma viride for enhanced methylene blue biosorption: batch and column studies.
    Saeed A; Iqbal M; Zafar SI
    J Hazard Mater; 2009 Aug; 168(1):406-15. PubMed ID: 19286314
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Biosorption of reactive dye from textile wastewater by non-viable biomass of Aspergillus niger and Spirogyra sp.
    Khalaf MA
    Bioresour Technol; 2008 Sep; 99(14):6631-4. PubMed ID: 18242981
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Biodegradation of Reactive blue 13 in a two-stage anaerobic/aerobic fluidized beds system with a Pseudomonas sp. isolate.
    Lin J; Zhang X; Li Z; Lei L
    Bioresour Technol; 2010 Jan; 101(1):34-40. PubMed ID: 19713103
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Equilibrium, kinetic and thermodynamic studies of the biosorption of textile dye (Reactive Red 195) onto Pinus sylvestris L.
    Aksakal O; Ucun H
    J Hazard Mater; 2010 Sep; 181(1-3):666-72. PubMed ID: 20541317
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.