These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 20421246)

  • 21. The Emission of Polycyclic Aromatic Hydrocarbons from Municipal Solid Waste Incinerators during the Combustion Cycle.
    Yasuda K; Takahashi M
    J Air Waste Manag Assoc; 1998 May; 48(5):441-447. PubMed ID: 28067145
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Polycyclic aromatic hydrocarbon (PAH) emission from co-firing municipal solid waste (MSW) and coal in a fluidized bed incinerator.
    You X
    Waste Manag; 2008; 28(9):1543-51. PubMed ID: 17996438
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Energy from Waste--clean, efficient, renewable: transitions in combustion efficiency and NOx control.
    Waldner MH; Halter R; Sigg A; Brosch B; Gehrmann HJ; Keunecke M
    Waste Manag; 2013 Feb; 33(2):317-26. PubMed ID: 23044260
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Combustion studies of high moisture content waste in a fluidised bed.
    Suksankraisorn K; Patumsawad S; Fungtammasan B
    Waste Manag; 2003; 23(5):433-9. PubMed ID: 12893016
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Industrial hazardous waste treatment featuring a rotary kiln and grate furnace incinerator: a case study in China.
    Ma P; Ma Z; Yan J; Chi Y; Ni M; Cen K
    Waste Manag Res; 2011 Oct; 29(10):1108-12. PubMed ID: 21746756
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nitrogen evolution during the co-combustion of hydrothermally treated municipal solid waste and coal in a bubbling fluidized bed.
    Lu L; Jin Y; Liu H; Ma X; Yoshikawa K
    Waste Manag; 2014 Jan; 34(1):79-85. PubMed ID: 24120458
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of CaO's effect on the fate of heavy metals during thermal treatment of two typical types of MSWI fly ashes in China.
    Hu HY; Liu H; Shen WQ; Luo GQ; Li AJ; Lu ZL; Yao H
    Chemosphere; 2013 Oct; 93(4):590-6. PubMed ID: 23800595
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Experimental investigation of ash deposits on convection heating surfaces of a circulating fluidized bed municipal solid waste incinerator.
    Tang Z; Chen X; Liu D; Zhuang Y; Ye M; Sheng H; Xu S
    J Environ Sci (China); 2016 Oct; 48():169-178. PubMed ID: 27745662
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Life-cycle assessment (EASEWASTE) of two municipal solid waste incineration technologies in China.
    Chen D; Christensen TH
    Waste Manag Res; 2010 Jun; 28(6):508-19. PubMed ID: 20375128
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Incinerator performance: effects of changes in waste input and furnace operation on air emissions and residues.
    Astrup T; Riber C; Pedersen AJ
    Waste Manag Res; 2011 Oct; 29(10 Suppl):57-68. PubMed ID: 21930520
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of municipal solid waste incinerator types on characteristics of ashes from different air pollution control devices.
    Lu CH; Chuang KH
    Environ Technol; 2016; 37(3):399-406. PubMed ID: 26226945
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of various chlorine additives on the partitioning of heavy metals during low-temperature two-stage fluidized bed incineration.
    Peng TH; Lin CL
    J Environ Manage; 2014 Dec; 146():362-368. PubMed ID: 25203439
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A study on toxic organic emissions from batch combustion of styrene.
    Westblad C; Levendis YA; Richter H; Howard JB; Carlson J
    Chemosphere; 2002 Oct; 49(4):395-412. PubMed ID: 12365837
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Numerical simulation of gas concentration and dioxin formation for MSW combustion in a fixed bed.
    Sun R; Ismail TM; Ren X; Abd El-Salam M
    J Environ Manage; 2015 Jul; 157():111-7. PubMed ID: 25897505
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Co-combustion of agricultural residues with coal in a fluidized bed combustor.
    Ghani WA; Alias AB; Savory RM; Cliffe KR
    Waste Manag; 2009 Feb; 29(2):767-73. PubMed ID: 18614348
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Converting moving-grate incineration from combustion to gasification - numerical simulation of the burning characteristics.
    Yang YB; Sharifi VN; Swithenbank J
    Waste Manag; 2007; 27(5):645-55. PubMed ID: 16730435
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Emissions investigation for a novel medical waste incinerator.
    Xie R; Li WJ; Li J; Wu BL; Yi JQ
    J Hazard Mater; 2009 Jul; 166(1):365-71. PubMed ID: 19111396
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Coupling scales for modelling heavy metal vaporization from municipal solid waste incineration in a fluid bed by CFD.
    Soria J; Gauthier D; Flamant G; Rodriguez R; Mazza G
    Waste Manag; 2015 Sep; 43():176-87. PubMed ID: 26050934
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pollutant emission characteristics of rice husk combustion in a vortexing fluidized bed incinerator.
    Duan F; Chyang C; Chin Y; Tso J
    J Environ Sci (China); 2013 Feb; 25(2):335-9. PubMed ID: 23596954
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Co-combustion of shredder residues and municipal solid waste in a Swedish municipal solid waste incinerator.
    Redin LA; Hjelt M; Marklund S
    Waste Manag Res; 2001 Dec; 19(6):518-25. PubMed ID: 12201681
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.