These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 20421304)
61. Identification of a reticulocyte-specific binding domain of Plasmodium vivax reticulocyte-binding protein 1 that is homologous to the PfRh4 erythrocyte-binding domain. Han JH; Lee SK; Wang B; Muh F; Nyunt MH; Na S; Ha KS; Hong SH; Park WS; Sattabongkot J; Tsuboi T; Han ET Sci Rep; 2016 May; 6():26993. PubMed ID: 27244695 [TBL] [Abstract][Full Text] [Related]
62. A Plasmodium falciparum novel gene encoding a coronin-like protein which associates with actin filaments. Tardieux I; Liu X; Poupel O; Parzy D; Dehoux P; Langsley G FEBS Lett; 1998 Dec; 441(2):251-6. PubMed ID: 9883894 [TBL] [Abstract][Full Text] [Related]
63. A subset of Plasmodium falciparum SERA genes are expressed and appear to play an important role in the erythrocytic cycle. Miller SK; Good RT; Drew DR; Delorenzi M; Sanders PR; Hodder AN; Speed TP; Cowman AF; de Koning-Ward TF; Crabb BS J Biol Chem; 2002 Dec; 277(49):47524-32. PubMed ID: 12228245 [TBL] [Abstract][Full Text] [Related]
64. Primary structure of the variable region of monoclonal antibody 2B10, capable of inducing anti-idiotypic antibodies that recognize the C-terminal region of MSA-1 of Plasmodium falciparum. Su S; Yang S; Ding R; Davidson EA Infect Immun; 1996 Jan; 64(1):326-31. PubMed ID: 8557359 [TBL] [Abstract][Full Text] [Related]
65. Solution structure of a dynein motor domain associated light chain. Wu H; Maciejewski MW; Marintchev A; Benashski SE; Mullen GP; King SM Nat Struct Biol; 2000 Jul; 7(7):575-9. PubMed ID: 10876244 [TBL] [Abstract][Full Text] [Related]
66. Analysis of Plasmodium falciparum myosin B ATPase activity and structure in complex with the calmodulin-like domain of its light chain MLC-B. Pires I; Hung YF; Bergmann U; Molloy JE; Kursula I J Biol Chem; 2022 Dec; 298(12):102634. PubMed ID: 36273584 [TBL] [Abstract][Full Text] [Related]
67. F-actin and myosin II binding domains in supervillin. Chen Y; Takizawa N; Crowley JL; Oh SW; Gatto CL; Kambara T; Sato O; Li XD; Ikebe M; Luna EJ J Biol Chem; 2003 Nov; 278(46):46094-106. PubMed ID: 12917436 [TBL] [Abstract][Full Text] [Related]
68. Gene structure and expression of a Plasmodium falciparum 220-kDa protein homologous to the Plasmodium vivax reticulocyte binding proteins. Kaneko O; Mu J; Tsuboi T; Su X; Torii M Mol Biochem Parasitol; 2002 May; 121(2):275-8. PubMed ID: 12034462 [No Abstract] [Full Text] [Related]
69. Receptor for Activated C-Kinase 1 (PfRACK1) is required for Plasmodium falciparum intra-erythrocytic proliferation. Blomqvist K; DiPetrillo C; Streva VA; Pine S; Dvorin JD Mol Biochem Parasitol; 2017 Jan; 211():62-66. PubMed ID: 27732881 [TBL] [Abstract][Full Text] [Related]
70. CLAG 9 is located in the rhoptries of Plasmodium falciparum. Gardiner DL; Spielmann T; Dixon MW; Hawthorne PL; Ortega MR; Anderson KL; Skinner-Adams TS; Kemp DJ; Trenholme KR Parasitol Res; 2004 May; 93(1):64-7. PubMed ID: 15103554 [TBL] [Abstract][Full Text] [Related]
71. Genome-Wide Collation of the Plasmodium falciparum WDR Protein Superfamily Reveals Malarial Parasite-Specific Features. Chahar P; Kaushik M; Gill SS; Gakhar SK; Gopalan N; Datt M; Sharma A; Gill R PLoS One; 2015; 10(6):e0128507. PubMed ID: 26043001 [TBL] [Abstract][Full Text] [Related]
72. Unusual properties of Plasmodium falciparum actin: new insights into microfilament dynamics of apicomplexan parasites. Schüler H; Mueller AK; Matuschewski K FEBS Lett; 2005 Jan; 579(3):655-60. PubMed ID: 15670824 [TBL] [Abstract][Full Text] [Related]
73. Plasmodium myosin A drives parasite invasion by an atypical force generating mechanism. Robert-Paganin J; Robblee JP; Auguin D; Blake TCA; Bookwalter CS; Krementsova EB; Moussaoui D; Previs MJ; Jousset G; Baum J; Trybus KM; Houdusse A Nat Commun; 2019 Jul; 10(1):3286. PubMed ID: 31337750 [TBL] [Abstract][Full Text] [Related]
74. The multifaceted histone chaperone RbAp46/48 in Plasmodium falciparum: structural insights, production, and characterization. Kaushik M; Nehra A; Gakhar SK; Gill SS; Gill R Parasitol Res; 2020 Jun; 119(6):1753-1765. PubMed ID: 32363442 [TBL] [Abstract][Full Text] [Related]
75. The N-terminal segment of Plasmodium falciparum SURFIN4.1 is required for its trafficking to the red blood cell cytosol through the endoplasmic reticulum. Zhu X; Yahata K; Alexandre JS; Tsuboi T; Kaneko O Parasitol Int; 2013 Apr; 62(2):215-29. PubMed ID: 23287798 [TBL] [Abstract][Full Text] [Related]
76. Plasmodium falciparum erythrocytic stage parasites require the putative autophagy protein PfAtg7 for normal growth. Walker DM; Mahfooz N; Kemme KA; Patel VC; Spangler M; Drew ME PLoS One; 2013; 8(6):e67047. PubMed ID: 23825614 [TBL] [Abstract][Full Text] [Related]
77. Targeting a dynamic protein-protein interaction: fragment screening against the malaria myosin A motor complex. Douse CH; Vrielink N; Wenlin Z; Cota E; Tate EW ChemMedChem; 2015 Jan; 10(1):134-43. PubMed ID: 25367834 [TBL] [Abstract][Full Text] [Related]
78. Identification of an endoplasmic reticulum-resident calcium-binding protein with multiple EF-hand motifs in asexual stages of Plasmodium falciparum. La Greca N; Hibbs AR; Riffkin C; Foley M; Tilley L Mol Biochem Parasitol; 1997 Nov; 89(2):283-93. PubMed ID: 9364972 [TBL] [Abstract][Full Text] [Related]
79. Census, molecular characterization and developmental expression of Leucine-Rich-Repeat proteins in Plasmodium falciparum. Daher W; Pierce R; Khalife J Mol Biochem Parasitol; 2007 Oct; 155(2):161-6. PubMed ID: 17689674 [TBL] [Abstract][Full Text] [Related]