BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 20421372)

  • 1. Coupling and cooperativity in voltage activation of a limited-state BK channel gating in saturating Ca2+.
    Shelley C; Niu X; Geng Y; Magleby KL
    J Gen Physiol; 2010 May; 135(5):461-80. PubMed ID: 20421372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intra- and intersubunit cooperativity in activation of BK channels by Ca2+.
    Qian X; Niu X; Magleby KL
    J Gen Physiol; 2006 Oct; 128(4):389-404. PubMed ID: 17001085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupling between voltage sensor activation, Ca2+ binding and channel opening in large conductance (BK) potassium channels.
    Horrigan FT; Aldrich RW
    J Gen Physiol; 2002 Sep; 120(3):267-305. PubMed ID: 12198087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mg2+ enhances voltage sensor/gate coupling in BK channels.
    Horrigan FT; Ma Z
    J Gen Physiol; 2008 Jan; 131(1):13-32. PubMed ID: 18166624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of beta4 subunit modulation of BK channels.
    Wang B; Rothberg BS; Brenner R
    J Gen Physiol; 2006 Apr; 127(4):449-65. PubMed ID: 16567466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Slo3 K+ channels: voltage and pH dependence of macroscopic currents.
    Zhang X; Zeng X; Lingle CJ
    J Gen Physiol; 2006 Sep; 128(3):317-36. PubMed ID: 16940555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gating kinetics of single large-conductance Ca2+-activated K+ channels in high Ca2+ suggest a two-tiered allosteric gating mechanism.
    Rothberg BS; Magleby KL
    J Gen Physiol; 1999 Jul; 114(1):93-124. PubMed ID: 10398695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship between pore occupancy and gating in BK potassium channels.
    Piskorowski RA; Aldrich RW
    J Gen Physiol; 2006 May; 127(5):557-76. PubMed ID: 16636204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A role for the S0 transmembrane segment in voltage-dependent gating of BK channels.
    Koval OM; Fan Y; Rothberg BS
    J Gen Physiol; 2007 Mar; 129(3):209-20. PubMed ID: 17296928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cysteine modification alters voltage- and Ca(2+)-dependent gating of large conductance (BK) potassium channels.
    Zhang G; Horrigan FT
    J Gen Physiol; 2005 Feb; 125(2):213-36. PubMed ID: 15684095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of charged residues in the S1-S4 voltage sensor of BK channels.
    Ma Z; Lou XJ; Horrigan FT
    J Gen Physiol; 2006 Mar; 127(3):309-28. PubMed ID: 16505150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Allosteric voltage gating of potassium channels II. Mslo channel gating charge movement in the absence of Ca(2+).
    Horrigan FT; Aldrich RW
    J Gen Physiol; 1999 Aug; 114(2):305-36. PubMed ID: 10436004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Voltage and Ca2+ activation of single large-conductance Ca2+-activated K+ channels described by a two-tiered allosteric gating mechanism.
    Rothberg BS; Magleby KL
    J Gen Physiol; 2000 Jul; 116(1):75-99. PubMed ID: 10871641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Allosteric voltage gating of potassium channels I. Mslo ionic currents in the absence of Ca(2+).
    Horrigan FT; Cui J; Aldrich RW
    J Gen Physiol; 1999 Aug; 114(2):277-304. PubMed ID: 10436003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional coupling of the beta(1) subunit to the large conductance Ca(2+)-activated K(+) channel in the absence of Ca(2+). Increased Ca(2+) sensitivity from a Ca(2+)-independent mechanism.
    Nimigean CM; Magleby KL
    J Gen Physiol; 2000 Jun; 115(6):719-36. PubMed ID: 10828246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mg(2+) binding to open and closed states can activate BK channels provided that the voltage sensors are elevated.
    Chen RS; Geng Y; Magleby KL
    J Gen Physiol; 2011 Dec; 138(6):593-607. PubMed ID: 22124117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic structure of large-conductance Ca2+-activated K+ channels suggests that the gating includes transitions through intermediate or secondary states. A mechanism for flickers.
    Rothberg BS; Magleby KL
    J Gen Physiol; 1998 Jun; 111(6):751-80. PubMed ID: 9607935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A charged residue in S4 regulates coupling among the activation gate, voltage, and Ca2+ sensors in BK channels.
    Zhang G; Yang H; Liang H; Yang J; Shi J; McFarland K; Chen Y; Cui J
    J Neurosci; 2014 Sep; 34(37):12280-8. PubMed ID: 25209270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ca2+-activated K channels in parotid acinar cells: The functional basis for the hyperpolarized activation of BK channels.
    Romanenko VG; Thompson J; Begenisich T
    Channels (Austin); 2010; 4(4):278-88. PubMed ID: 20519930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deletion of cytosolic gating ring decreases gate and voltage sensor coupling in BK channels.
    Zhang G; Geng Y; Jin Y; Shi J; McFarland K; Magleby KL; Salkoff L; Cui J
    J Gen Physiol; 2017 Mar; 149(3):373-387. PubMed ID: 28196879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.