BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 20421510)

  • 1. Roles of glutamates and metal ions in a rationally designed nitric oxide reductase based on myoglobin.
    Lin YW; Yeung N; Gao YG; Miner KD; Tian S; Robinson H; Lu Y
    Proc Natl Acad Sci U S A; 2010 May; 107(19):8581-6. PubMed ID: 20421510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic reduction of NO to N2O by a designed heme copper center in myoglobin: implications for the role of metal ions.
    Zhao X; Yeung N; Russell BS; Garner DK; Lu Y
    J Am Chem Soc; 2006 May; 128(21):6766-7. PubMed ID: 16719438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Introducing a 2-His-1-Glu nonheme iron center into myoglobin confers nitric oxide reductase activity.
    Lin YW; Yeung N; Gao YG; Miner KD; Lei L; Robinson H; Lu Y
    J Am Chem Soc; 2010 Jul; 132(29):9970-2. PubMed ID: 20586490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Outer-Sphere Side Chain Substitutions on the Fate of the trans Iron-Nitrosyl Dimer in Heme/Nonheme Engineered Myoglobins (Fe(B)Mbs): Insights into the Mechanism of Denitrifying NO Reductases.
    Matsumura H; Chakraborty S; Reed J; Lu Y; Moënne-Loccoz P
    Biochemistry; 2016 Apr; 55(14):2091-9. PubMed ID: 27003474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectroscopic characterization of mononitrosyl complexes in heme--nonheme diiron centers within the myoglobin scaffold (Fe(B)Mbs): relevance to denitrifying NO reductase.
    Hayashi T; Miner KD; Yeung N; Lin YW; Lu Y; Moënne-Loccoz P
    Biochemistry; 2011 Jul; 50(26):5939-47. PubMed ID: 21634416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of heme types in heme-copper oxidases: effects of replacing a heme b with a heme o mimic in an engineered heme-copper center in myoglobin.
    Wang N; Zhao X; Lu Y
    J Am Chem Soc; 2005 Nov; 127(47):16541-7. PubMed ID: 16305243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulating the nitrite reductase activity of myoglobin by redesigning the heme active center.
    Wu LB; Yuan H; Gao SQ; You Y; Nie CM; Wen GB; Lin YW; Tan X
    Nitric Oxide; 2016 Jul; 57():21-29. PubMed ID: 27108710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of metal ions in the CuB center on the redox properties of heme in heme-copper oxidases: spectroelectrochemical studies of an engineered heme-copper center in myoglobin.
    Zhao X; Yeung N; Wang Z; Guo Z; Lu Y
    Biochemistry; 2005 Feb; 44(4):1210-4. PubMed ID: 15667214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox-dependent structural changes in an engineered heme-copper center in myoglobin: insights into chloride binding to CuB in heme copper oxidases.
    Zhao X; Nilges MJ; Lu Y
    Biochemistry; 2005 May; 44(17):6559-64. PubMed ID: 15850389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The main role of inner histidines in the molecular mechanism of myoglobin oxidation catalyzed by copper compounds.
    Postnikova GB; Moiseeva SA; Shekhovtsova EA
    Inorg Chem; 2010 Feb; 49(4):1347-54. PubMed ID: 20088488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of the heme distal pocket on nitrite binding orientation and reactivity in Sperm Whale myoglobin.
    Tse W; Whitmore N; Cheesman MR; Watmough NJ
    Biochem J; 2021 Feb; 478(4):927-942. PubMed ID: 33543749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitric Oxide Reductase Activity in Heme-Nonheme Binuclear Engineered Myoglobins through a One-Electron Reduction Cycle.
    Sabuncu S; Reed JH; Lu Y; Moënne-Loccoz P
    J Am Chem Soc; 2018 Dec; 140(50):17389-17393. PubMed ID: 30512937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stabilizing bound O2 in myoglobin by valine68 (E11) to asparagine substitution.
    Krzywda S; Murshudov GN; Brzozowski AM; Jaskolski M; Scott EE; Klizas SA; Gibson QH; Olson JS; Wilkinson AJ
    Biochemistry; 1998 Nov; 37(45):15896-907. PubMed ID: 9843395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hemoglobin and Myoglobin as Reducing Agents in Biological Systems. Redox Reactions of Globins with Copper and Iron Salts and Complexes.
    Postnikova GB; Shekhovtsova EA
    Biochemistry (Mosc); 2016 Dec; 81(13):1735-1753. PubMed ID: 28260494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alteration of sperm whale myoglobin heme axial ligation by site-directed mutagenesis.
    Egeberg KD; Springer BA; Martinis SA; Sligar SG; Morikis D; Champion PM
    Biochemistry; 1990 Oct; 29(42):9783-91. PubMed ID: 2176857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural insights into a low-spin myoglobin variant with bis-histidine coordination from molecular modeling.
    Lin YW
    Proteins; 2011 Mar; 79(3):679-84. PubMed ID: 21287605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural dynamics of myoglobin: FTIR-TDS study of NO migration and binding.
    Nienhaus K; Palladino P; Nienhaus GU
    Biochemistry; 2008 Jan; 47(3):935-48. PubMed ID: 18161992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rational design of a structural and functional nitric oxide reductase.
    Yeung N; Lin YW; Gao YG; Zhao X; Russell BS; Lei L; Miner KD; Robinson H; Lu Y
    Nature; 2009 Dec; 462(7276):1079-82. PubMed ID: 19940850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural basis of biological N2O generation by bacterial nitric oxide reductase.
    Hino T; Matsumoto Y; Nagano S; Sugimoto H; Fukumori Y; Murata T; Iwata S; Shiro Y
    Science; 2010 Dec; 330(6011):1666-70. PubMed ID: 21109633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phe-46(CD4) orients the distal histidine for hydrogen bonding to bound ligands in sperm whale myoglobin.
    Lai HH; Li T; Lyons DS; Phillips GN; Olson JS; Gibson QH
    Proteins; 1995 Aug; 22(4):322-39. PubMed ID: 7479707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.