These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 20422034)

  • 41. Defining the optimal parameters for hairpin-based knockdown constructs.
    Li L; Lin X; Khvorova A; Fesik SW; Shen Y
    RNA; 2007 Oct; 13(10):1765-74. PubMed ID: 17698642
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Amide-Modified RNA: Using Protein Backbone to Modulate Function of Short Interfering RNAs.
    Kotikam V; Rozners E
    Acc Chem Res; 2020 Sep; 53(9):1782-1790. PubMed ID: 32658452
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of conformational alteration induced by D-/L-isonucleoside incorporation in siRNA on their stability in serum and silencing activity.
    Huang Y; Chen Z; Chen Y; Zhang H; Zhang Y; Zhao Y; Yang Z; Zhang L
    Bioconjug Chem; 2013 Jun; 24(6):951-9. PubMed ID: 23682837
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Weak base pairing in both seed and 3' regions reduces RNAi off-targets and enhances si/shRNA designs.
    Gu S; Zhang Y; Jin L; Huang Y; Zhang F; Bassik MC; Kampmann M; Kay MA
    Nucleic Acids Res; 2014 Oct; 42(19):12169-76. PubMed ID: 25270879
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A statistical sampling algorithm for RNA secondary structure prediction.
    Ding Y; Lawrence CE
    Nucleic Acids Res; 2003 Dec; 31(24):7280-301. PubMed ID: 14654704
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Sequence, chemical, and structural variation of small interfering RNAs and short hairpin RNAs and the effect on mammalian gene silencing.
    Harborth J; Elbashir SM; Vandenburgh K; Manninga H; Scaringe SA; Weber K; Tuschl T
    Antisense Nucleic Acid Drug Dev; 2003 Apr; 13(2):83-105. PubMed ID: 12804036
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Predicting siRNA efficiency.
    Li W; Cha L
    Cell Mol Life Sci; 2007 Jul; 64(14):1785-92. PubMed ID: 17415516
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An algorithm for selection of functional siRNA sequences.
    Amarzguioui M; Prydz H
    Biochem Biophys Res Commun; 2004 Apr; 316(4):1050-8. PubMed ID: 15044091
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Selection of hyperfunctional siRNAs with improved potency and specificity.
    Wang X; Wang X; Varma RK; Beauchamp L; Magdaleno S; Sendera TJ
    Nucleic Acids Res; 2009 Dec; 37(22):e152. PubMed ID: 19846596
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Towards Antiviral shRNAs Based on the AgoshRNA Design.
    Liu YP; Karg M; Herrera-Carrillo E; Berkhout B
    PLoS One; 2015; 10(6):e0128618. PubMed ID: 26087209
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Efficient RNA interference depends on global context of the target sequence: quantitative analysis of silencing efficiency using Eulerian graph representation of siRNA.
    Pancoska P; Moravek Z; Moll UM
    Nucleic Acids Res; 2004; 32(4):1469-79. PubMed ID: 14993466
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Silencing activity of 2'-O-methyl modified anti-MDR1 siRNAs with mismatches in the central part of the duplexes.
    Petrova NS; Meschaninova MI; Venyaminova AG; Zenkova MA; Vlassov VV; Chernolovskaya EL
    FEBS Lett; 2011 Jul; 585(14):2352-6. PubMed ID: 21704032
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of chemical modification on the potency, serum stability, and immunostimulatory properties of short shRNAs.
    Ge Q; Dallas A; Ilves H; Shorenstein J; Behlke MA; Johnston BH
    RNA; 2010 Jan; 16(1):118-30. PubMed ID: 19948766
    [TBL] [Abstract][Full Text] [Related]  

  • 54. In silico prediction of short hairpin RNA and in vitro silencing of activin receptor type IIB in chicken embryo fibroblasts by RNA interference.
    Guru Vishnu P; Bhattacharya TK; Bhushan B; Kumar P; Chatterjee RN; Paswan C; Dushyanth K; Divya D; Prasad AR
    Mol Biol Rep; 2019 Jun; 46(3):2947-2959. PubMed ID: 30879273
    [TBL] [Abstract][Full Text] [Related]  

  • 55. RNA major groove modifications improve siRNA stability and biological activity.
    Terrazas M; Kool ET
    Nucleic Acids Res; 2009 Feb; 37(2):346-53. PubMed ID: 19042976
    [TBL] [Abstract][Full Text] [Related]  

  • 56. shRNAs targeting hepatitis C: effects of sequence and structural features, and comparision with siRNA.
    Vlassov AV; Korba B; Farrar K; Mukerjee S; Seyhan AA; Ilves H; Kaspar RL; Leake D; Kazakov SA; Johnston BH
    Oligonucleotides; 2007; 17(2):223-36. PubMed ID: 17638526
    [TBL] [Abstract][Full Text] [Related]  

  • 57. siRecords: a database of mammalian RNAi experiments and efficacies.
    Ren Y; Gong W; Zhou H; Wang Y; Xiao F; Li T
    Nucleic Acids Res; 2009 Jan; 37(Database issue):D146-9. PubMed ID: 18996894
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Designing highly active siRNAs for therapeutic applications.
    Walton SP; Wu M; Gredell JA; Chan C
    FEBS J; 2010 Dec; 277(23):4806-13. PubMed ID: 21078115
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Asymmetric shorter-duplex siRNA structures trigger efficient gene silencing with reduced nonspecific effects.
    Chang CI; Yoo JW; Hong SW; Lee SE; Kang HS; Sun X; Rogoff HA; Ban C; Kim S; Li CJ; Lee DK
    Mol Ther; 2009 Apr; 17(4):725-32. PubMed ID: 19156133
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A systematic study on the influence of thermodynamic asymmetry of 5'-ends of siRNA duplexes in relation to their silencing potency.
    Lisowiec-Wąchnicka J; Bartyś N; Pasternak A
    Sci Rep; 2019 Feb; 9(1):2477. PubMed ID: 30792489
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.