BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 20422061)

  • 1. Outcome of occupational asthma after removal from exposure: A follow-up study.
    Lemiere C; Chaboillez S; Welman M; Maghni K
    Can Respir J; 2010; 17(2):61-6. PubMed ID: 20422061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Occupational asthma in detail.
    Anthonisen NR
    Can Respir J; 2010; 17(2):51-2. PubMed ID: 20422057
    [No Abstract]   [Full Text] [Related]  

  • 3. Follow-up of occupational asthma after removal from or diminution of exposure to the responsible agent: relevance of the length of the interval from cessation of exposure.
    Perfetti L; Cartier A; Ghezzo H; Gautrin D; Malo JL
    Chest; 1998 Aug; 114(2):398-403. PubMed ID: 9726721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diagnostic Accuracy of Inflammatory Markers for Diagnosing Occupational Asthma.
    Racine G; Castano R; Cartier A; Lemiere C
    J Allergy Clin Immunol Pract; 2017; 5(5):1371-1377.e1. PubMed ID: 28286155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Occupational asthma: role of airway inflammation and remodelling in persistent respiratory symptoms and bronchial hyper-responsiveness].
    Siracusa A; Marabini A; Pace ML; Tacconi C; Folletti I; Bussetti A; Maestrelli P
    Med Lav; 2004; 95(4):275-81. PubMed ID: 15532960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sputum eosinophilia is a determinant of FEV1 decline in occupational asthma: results of an observational study.
    Talini D; Novelli F; Bacci E; Bartoli M; Cianchetti S; Costa F; Dente FL; Di Franco A; Latorre M; Malagrinò L; Vagaggini B; Celi A; Paggiaro P
    BMJ Open; 2015 Jan; 5(1):e005748. PubMed ID: 25564139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Persistent airway obstruction after virus infection is not associated with airway inflammation.
    Wood LG; Powell H; Grissell T; Nguyen TT; Shafren D; Hensley M; Gibson PG
    Chest; 2007 Feb; 131(2):415-23. PubMed ID: 17296642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FEV1 decline in occupational asthma.
    Anees W; Moore VC; Burge PS
    Thorax; 2006 Sep; 61(9):751-5. PubMed ID: 16670172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of occupational asthma: sputum cell counts or exhaled nitric oxide?
    Lemière C; D'Alpaos V; Chaboillez S; César M; Wattiez M; Chiry S; Vandenplas O
    Chest; 2010 Mar; 137(3):617-22. PubMed ID: 19952060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in sputum cell counts after exposure to occupational agents: what do they mean?
    Lemière C; Chaboillez S; Malo JL; Cartier A
    J Allergy Clin Immunol; 2001 Jun; 107(6):1063-8. PubMed ID: 11398086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Airway inflammation after removal from the causal agent in occupational asthma due to high and low molecular weight agents.
    Boulet LP; Boutet M; Laviolette M; Dugas M; Milot J; Leblanc C; Paquette L; Côté J; Cartier A; Malo JL
    Eur Respir J; 1994 Sep; 7(9):1567-75. PubMed ID: 7995383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exhaled nitric oxide for monitoring childhood asthma inflammation compared to sputum analysis, serum interleukins and pulmonary function.
    Paro-Heitor ML; Bussamra MH; Saraiva-Romanholo BM; Martins MA; Okay TS; Rodrigues JC
    Pediatr Pulmonol; 2008 Feb; 43(2):134-41. PubMed ID: 18085692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Eosinophilic bronchitis in the workplace.
    Quirce S
    Curr Opin Allergy Clin Immunol; 2004 Apr; 4(2):87-91. PubMed ID: 15021059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clinical and inflammatory characteristics of Asthma-COPD overlap in workers with occupational asthma.
    Ojanguren I; Moullec G; Hobeika J; Miravitlles M; Lemiere C
    PLoS One; 2018; 13(3):e0193144. PubMed ID: 29499062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Airway inflammation after cessation of exposure to agents causing occupational asthma.
    Maghni K; Lemière C; Ghezzo H; Yuquan W; Malo JL
    Am J Respir Crit Care Med; 2004 Feb; 169(3):367-72. PubMed ID: 14578217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Airway inflammation and functional changes after exposure to different concentrations of isocyanates.
    Lemière C; Romeo P; Chaboillez S; Tremblay C; Malo JL
    J Allergy Clin Immunol; 2002 Oct; 110(4):641-6. PubMed ID: 12373274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recovery of methacholine responsiveness after end of exposure in occupational asthma.
    Malo JL; Ghezzo H
    Am J Respir Crit Care Med; 2004 Jun; 169(12):1304-7. PubMed ID: 15070824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Airway inflammation and cellular stress in noneosinophilic atopic asthma.
    Tsoumakidou M; Papadopouli E; Tzanakis N; Siafakas NM
    Chest; 2006 May; 129(5):1194-202. PubMed ID: 16685009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rechallenging subjects with occupational asthma due to toluene diisocyanate (TDI), after long-term removal from exposure.
    Pisati G; Baruffini A; Bernabeo F; Cerri S; Mangili A
    Int Arch Occup Environ Health; 2007 Feb; 80(4):298-305. PubMed ID: 16957957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increase in non-specific bronchial hyperresponsiveness as an early marker of bronchial response to occupational agents during specific inhalation challenges.
    Vandenplas O; Delwiche JP; Jamart J; Van de Weyer R
    Thorax; 1996 May; 51(5):472-8. PubMed ID: 8711673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.