These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 20422085)

  • 1. Solid-state (31)P NMR characterisation of phosphinine-stabilised gold nanoparticles and a phosphinine-gold complex.
    Mallissery SK; Gudat D
    Dalton Trans; 2010 May; 39(18):4280-4. PubMed ID: 20422085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stability of the gold(i)-phosphine bond. A comparison with other group 11 elements.
    Schwerdtfeger P; Hermann HL; Schmidbaur H
    Inorg Chem; 2003 Feb; 42(4):1334-42. PubMed ID: 12588173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solid state NMR studies of photoluminescent cadmium chalcogenide nanoparticles.
    Ratcliffe CI; Yu K; Ripmeester JA; Badruz Zaman M; Badarau C; Singh S
    Phys Chem Chem Phys; 2006 Aug; 8(30):3510-9. PubMed ID: 16871340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural, (197)Au Mössbauer and solid state (31)P CP/MAS NMR studies on bis (cis-bis(diphenylphosphino)ethylene) gold(I) complexes [Au(dppey)(2)]X for X = PF(6), I.
    Healy PC; Loughrey BT; Bowmaker GA; Hanna JV
    Dalton Trans; 2008 Jul; (28):3723-8. PubMed ID: 18615219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of conformational changes on a one-electron reduction process: evidence of a one-electron P-P bond formation in a bis(phosphinine).
    Choua S; Dutan C; Cataldo L; Berclaz T; Geoffroy M; Mézailles N; Moores A; Ricard L; Le Floch P
    Chemistry; 2004 Aug; 10(16):4080-90. PubMed ID: 15316987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphinine stabilised gold nanoparticles; synthesis and immobilisation on mesoporous materials.
    Moores A; Goettmann F; Sanchez C; Le Floch P
    Chem Commun (Camb); 2004 Dec; (24):2842-3. PubMed ID: 15599434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The use of imidazolium-2-dithiocarboxylates in the formation of gold(I) complexes and gold nanoparticles.
    Naeem S; Delaude L; White AJ; Wilton-Ely JD
    Inorg Chem; 2010 Feb; 49(4):1784-93. PubMed ID: 20088565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multimetallic arrays: bi-, tri-, tetra-, and hexametallic complexes based on gold(I) and gold(III) and the surface functionalization of gold nanoparticles with transition metals.
    Knight ER; Leung NH; Thompson AL; Hogarth G; Wilton-Ely JD
    Inorg Chem; 2009 Apr; 48(8):3866-74. PubMed ID: 19296612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis, structures and reactions of cyclometallated gold complexes containing (2-diphenylarsino-n-methyl)phenyl (n = 5, 6).
    Kitadai K; Takahashi M; Takeda M; Bhargava SK; Privér SH; Bennett MA
    Dalton Trans; 2006 Jun; (21):2560-71. PubMed ID: 16718340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and characterization of accessible metal surfaces in calixarene-bound gold nanoparticles.
    Ha JM; Solovyov A; Katz A
    Langmuir; 2009 Sep; 25(18):10548-53. PubMed ID: 19645476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A chelate-stabilized ruthenium(sigma-pyrrolato) complex: resolving ambiguities in nuclearity and coordination geometry through 1H PGSE and 31P solid-state NMR studies.
    Foucault HM; Bryce DL; Fogg DE
    Inorg Chem; 2006 Dec; 45(25):10293-9. PubMed ID: 17140238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multidentate Phosphanyl Phosphinines: Synthesis and Properties.
    Chen X; Li Z; Grützmacher H
    Chemistry; 2018 Jun; 24(33):8432-8437. PubMed ID: 29644747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The case of a μ
    Zhang J; Hou Y; Liu S; Lin J; Li Z
    Dalton Trans; 2024 Mar; 53(12):5608-5615. PubMed ID: 38439621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and structural determination of multidentate 2,3-dithiol-stabilized Au clusters.
    Tang Z; Xu B; Wu B; Germann MW; Wang G
    J Am Chem Soc; 2010 Mar; 132(10):3367-74. PubMed ID: 20158181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functionalized gold nanoparticles as phosphorescent nanomaterials and sensors.
    Ipe BI; Yoosaf K; Thomas KG
    J Am Chem Soc; 2006 Feb; 128(6):1907-13. PubMed ID: 16464092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three- and four-coordinate gold(I) complexes of 3,6-bis(diphenylphosphino)pyridazine: monomers, polymers, and a metallocryptand cage.
    Catalano VJ; Malwitz MA; Horner SJ; Vasquez J
    Inorg Chem; 2003 Mar; 42(6):2141-8. PubMed ID: 12639153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of gold phosphido complexes derived from bis(secondary) phosphines. structure of tetrameric [Au(MesP(CH(2))(3)PMes)Au](4).
    Lane EM; Chapp TW; Hughes RP; Glueck DS; Feland BC; Bernard GM; Wasylishen RE; Rheingold AL
    Inorg Chem; 2010 Apr; 49(8):3950-7. PubMed ID: 20232831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Syntheses, structures, and photophysical properties of mono- and dinuclear sulfur-rich gold(I) complexes.
    Guyon F; Hameau A; Khatyr A; Knorr M; Amrouche H; Fortin D; Harvey PD; Strohmann C; Ndiaye AL; Huch V; Veith M; Avarvari N
    Inorg Chem; 2008 Sep; 47(17):7483-92. PubMed ID: 18661971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gold nanoparticles with perfluorothiolate ligands.
    Dass A; Guo R; Tracy JB; Balasubramanian R; Douglas AD; Murray RW
    Langmuir; 2008 Jan; 24(1):310-5. PubMed ID: 18052299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gold nanoparticle-initiated free radical oxidations and halogen abstractions.
    Ionita P; Conte M; Gilbert BC; Chechik V
    Org Biomol Chem; 2007 Nov; 5(21):3504-9. PubMed ID: 17943210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.