These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 20422445)
41. Adaptation of the simple or complex nature of V1 receptive fields to visual statistics. Fournier J; Monier C; Pananceau M; Frégnac Y Nat Neurosci; 2011 Jul; 14(8):1053-60. PubMed ID: 21765424 [TBL] [Abstract][Full Text] [Related]
42. Dynamic functional connectivity among neuronal population during modulation of extra-classical receptive field in primary visual cortex. Niu X; Shi L; Wan H; Wang Z; Shang Z; Li Z Brain Res Bull; 2015 Aug; 117():45-53. PubMed ID: 26192204 [TBL] [Abstract][Full Text] [Related]
43. Surround suppression maps in the cat primary visual cortex. Vanni MP; Casanova C Front Neural Circuits; 2013; 7():78. PubMed ID: 23630471 [TBL] [Abstract][Full Text] [Related]
44. A study on asymmetry of spatial visual field by analysis of the fMRI BOLD response. Chen H; Yao D; Liu Z Brain Topogr; 2004; 17(1):39-46. PubMed ID: 15669754 [TBL] [Abstract][Full Text] [Related]
45. Feedback of visual object information to foveal retinotopic cortex. Williams MA; Baker CI; Op de Beeck HP; Shim WM; Dang S; Triantafyllou C; Kanwisher N Nat Neurosci; 2008 Dec; 11(12):1439-45. PubMed ID: 18978780 [TBL] [Abstract][Full Text] [Related]
46. Retinotopic mapping of the human visual cortex at a magnetic field strength of 7T. Hoffmann MB; Stadler J; Kanowski M; Speck O Clin Neurophysiol; 2009 Jan; 120(1):108-16. PubMed ID: 19071059 [TBL] [Abstract][Full Text] [Related]
47. Retinotopic organization of human ventral visual cortex. Arcaro MJ; McMains SA; Singer BD; Kastner S J Neurosci; 2009 Aug; 29(34):10638-52. PubMed ID: 19710316 [TBL] [Abstract][Full Text] [Related]
48. Global Motion Processing in Human Visual Cortical Areas V2 and V3. Furlan M; Smith AT J Neurosci; 2016 Jul; 36(27):7314-24. PubMed ID: 27383603 [TBL] [Abstract][Full Text] [Related]
50. Center-surround interactions in the middle temporal visual area of the owl monkey. Born RT J Neurophysiol; 2000 Nov; 84(5):2658-69. PubMed ID: 11068007 [TBL] [Abstract][Full Text] [Related]
51. Achromatic temporal-frequency responses of human lateral geniculate nucleus and primary visual cortex. Bayram A; Karahan E; Bilgiç B; Ademoglu A; Demiralp T Vision Res; 2016 Oct; 127():177-185. PubMed ID: 27613997 [TBL] [Abstract][Full Text] [Related]
52. Neural responses in the macaque v1 to bar stimuli with various lengths presented on the blind spot. Matsumoto M; Komatsu H J Neurophysiol; 2005 May; 93(5):2374-87. PubMed ID: 15634711 [TBL] [Abstract][Full Text] [Related]
53. Parametric reverse correlation reveals spatial linearity of retinotopic human V1 BOLD response. Hansen KA; David SV; Gallant JL Neuroimage; 2004 Sep; 23(1):233-41. PubMed ID: 15325370 [TBL] [Abstract][Full Text] [Related]
54. An fMRI study of the functional distinction of neuronal circuits at the sites on ventral visual stream co-activated by visual stimuli of different objects. Sung YW; Kamba M; Ogawa S Exp Brain Res; 2007 Aug; 181(4):657-63. PubMed ID: 17486323 [TBL] [Abstract][Full Text] [Related]
55. Attentional load and sensory competition in human vision: modulation of fMRI responses by load at fixation during task-irrelevant stimulation in the peripheral visual field. Schwartz S; Vuilleumier P; Hutton C; Maravita A; Dolan RJ; Driver J Cereb Cortex; 2005 Jun; 15(6):770-86. PubMed ID: 15459076 [TBL] [Abstract][Full Text] [Related]
56. Resolving the Spatial Profile of Figure Enhancement in Human V1 through Population Receptive Field Modeling. Poltoratski S; Tong F J Neurosci; 2020 Apr; 40(16):3292-3303. PubMed ID: 32139585 [TBL] [Abstract][Full Text] [Related]