These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

60 related articles for article (PubMed ID: 20422548)

  • 1. The use of remote sensing for the ecological description of multi-host disease systems: a case study on West Nile virus in southern France.
    Tran A; Gaidet N; L' Ambert G; Balenghien T; Balança G; Chevalier V; Soti V; Ivanes C; Etter E; Schaffner F; Baldet T; de la Rocque S
    Vet Ital; 2007; 43(3):687-97. PubMed ID: 20422548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Host selection by Culex pipiens mosquitoes and West Nile virus amplification.
    Hamer GL; Kitron UD; Goldberg TL; Brawn JD; Loss SR; Ruiz MO; Hayes DB; Walker ED
    Am J Trop Med Hyg; 2009 Feb; 80(2):268-78. PubMed ID: 19190226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A geospatial study of the potential of two exotic species of mosquitoes to impact the epidemiology of West Nile virus in Maryland.
    Kutz FW; Wade TG; Pagac BB
    J Am Mosq Control Assoc; 2003 Sep; 19(3):190-8. PubMed ID: 14524539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Geographical Information Systems and remote sensing technologies in parasitological epidemiology].
    Rinaldi L; Cascone C; Sibilio G; Musella V; Taddei R; Cringoli G
    Parassitologia; 2004 Jun; 46(1-2):71-4. PubMed ID: 15305690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Remote sensing based identification of environmental risk factors associated with West Nile disease in horses in Camargue, France.
    Leblond A; Sandoz A; Lefebvre G; Zeller H; Bicout DJ
    Prev Vet Med; 2007 Apr; 79(1):20-31. PubMed ID: 17175048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low West Nile virus circulation in wild birds in an area of recurring outbreaks in Southern France.
    Balança G; Gaidet N; Savini G; Vollot B; Foucart A; Reiter P; Boutonnier A; Lelli R; Monicat F
    Vector Borne Zoonotic Dis; 2009 Dec; 9(6):737-41. PubMed ID: 19402766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Use of insecticide-treated cattle to control Rift Valley fever and West Nile virus vectors in Senegal].
    Diallo D; Ba Y; Dia I; Lassana K; Diallo M
    Bull Soc Pathol Exot; 2008 Dec; 101(5):410-7. PubMed ID: 19192613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Impact of changes in the environment on vector-transmitted diseases].
    Mouchet J; Carnevale P
    Sante; 1997; 7(4):263-9. PubMed ID: 9410453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. West Nile virus emergence and large-scale declines of North American bird populations.
    LaDeau SL; Kilpatrick AM; Marra PP
    Nature; 2007 Jun; 447(7145):710-3. PubMed ID: 17507930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combining mosquito vector and human disease data for improved assessment of spatial West Nile virus disease risk.
    Winters AM; Bolling BG; Beaty BJ; Blair CD; Eisen RJ; Meyer AM; Pape WJ; Moore CG; Eisen L
    Am J Trop Med Hyg; 2008 Apr; 78(4):654-65. PubMed ID: 18385365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic influences on mosquito feeding behavior and the emergence of zoonotic pathogens.
    Kilpatrick AM; Kramer LD; Jones MJ; Marra PP; Daszak P; Fonseca DM
    Am J Trop Med Hyg; 2007 Oct; 77(4):667-71. PubMed ID: 17978068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Does the roosting behavior of birds affect transmission dynamics of West Nile virus?
    Ward MP; Raim A; Yaremych-Hamer S; Lampman R; Novak RJ
    Am J Trop Med Hyg; 2006 Aug; 75(2):350-5. PubMed ID: 16896147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A mathematical model for assessing control strategies against West Nile virus.
    Bowman C; Gumel AB; van den Driessche P; Wu J; Zhu H
    Bull Math Biol; 2005 Sep; 67(5):1107-33. PubMed ID: 15998497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transmission assumptions generate conflicting predictions in host-vector disease models: a case study in West Nile virus.
    Wonham MJ; Lewis MA; Rencławowicz J; van den Driessche P
    Ecol Lett; 2006 Jun; 9(6):706-25. PubMed ID: 16706915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mosquito-borne viruses in western Europe: a review.
    Lundström JO
    J Vector Ecol; 1999 Jun; 24(1):1-39. PubMed ID: 10436876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [West Nile virus: a reality in Mexico].
    Téllez I; Calderón O; Franco-Paredes C; del Río C
    Gac Med Mex; 2006; 142(6):493-9. PubMed ID: 17201112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Current malaria situation in the Republic of Kazakhstan].
    Bismil'din FB; Shapieva ZhZh; Anpilova EN
    Med Parazitol (Mosk); 2001; (1):24-33. PubMed ID: 11548308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distribution and abundance of host-seeking Culex species at three proximate locations with different levels of West Nile virus activity.
    Rochlin I; Ginsberg HS; Campbell SR
    Am J Trop Med Hyg; 2009 Apr; 80(4):661-8. PubMed ID: 19346396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Seasonal dynamics of four potential West Nile vector species in north-central Texas.
    Bolling BG; Kennedy JH; Zimmerman EG
    J Vector Ecol; 2005 Dec; 30(2):186-94. PubMed ID: 16599151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environmental changes, disease ecology and geographic information system-based tools for risk assessment.
    de La Rocque S; Tran AL; Etter E; Vial L; Hendrickx G
    Vet Ital; 2007; 43(3):381-91. PubMed ID: 20422514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.