These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 2042259)
1. [Regeneration capacity of the iliac crest after spongiosa removal in humans--induction by phosphate ceramics?]. Roesgen M Unfallchirurgie; 1991 Feb; 17(1):44-59. PubMed ID: 2042259 [TBL] [Abstract][Full Text] [Related]
2. [The regenerative ability of the iliac crest following spongiosa removal in man--induction by phosphate ceramics? I]. Roesgen M Unfallchirurgie; 1990 Oct; 16(5):258-65. PubMed ID: 2260236 [TBL] [Abstract][Full Text] [Related]
3. [Standardized bone model for incorporation of bone, bone ceramics or other materials into the implant bed]. Roesgen M; Hierholzer G Aktuelle Traumatol; 1990 Feb; 20(1):37-43. PubMed ID: 1969694 [TBL] [Abstract][Full Text] [Related]
4. Standard method for the investigation of bone transplants, ceramics, or other material in a human bony layer. Roesgen M; Hierholzer G Arch Orthop Trauma Surg (1978); 1988; 107(2):117-9. PubMed ID: 3282487 [TBL] [Abstract][Full Text] [Related]
5. In vivo evaluation of bone marrow stromal-derived osteoblasts-porous calcium phosphate ceramic composites as bone graft substitute for lumbar intervertebral spinal fusion. Kai T; Shao-qing G; Geng-ting D Spine (Phila Pa 1976); 2003 Aug; 28(15):1653-8. PubMed ID: 12897487 [TBL] [Abstract][Full Text] [Related]
6. Ceramic anterior spinal fusion. Biologic and biomechanical comparison in a canine model. Emery SE; Fuller DA; Stevenson S Spine (Phila Pa 1976); 1996 Dec; 21(23):2713-9. PubMed ID: 8979316 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of porous biphasic calcium phosphate ceramics for anterior cervical interbody fusion in a caprine model. Toth JM; An HS; Lim TH; Ran Y; Weiss NG; Lundberg WR; Xu RM; Lynch KL Spine (Phila Pa 1976); 1995 Oct; 20(20):2203-10. PubMed ID: 8545713 [TBL] [Abstract][Full Text] [Related]
8. Iliac crest reconstruction with a bioactive ceramic spacer. Ito M; Abumi K; Moridaira H; Shono Y; Kotani Y; Minami A; Kaneda K Eur Spine J; 2005 Feb; 14(1):99-102. PubMed ID: 15241670 [TBL] [Abstract][Full Text] [Related]
9. Repair of cranial bone defects with calcium phosphate ceramic implant or autogenous bone graft. da Silva RV; Bertran CA; Kawachi EY; Camilli JA J Craniofac Surg; 2007 Mar; 18(2):281-6. PubMed ID: 17414276 [TBL] [Abstract][Full Text] [Related]
10. [Resorbable calcium phosphate ceramics under load (author's transl)]. Köster K; Heide H; König R Langenbecks Arch Chir; 1977 Feb; 343(3):173-81. PubMed ID: 846277 [TBL] [Abstract][Full Text] [Related]
11. Posterolateral lumbar intertransverse process spine arthrodesis with recombinant human bone morphogenetic protein 2/hydroxyapatite-tricalcium phosphate after laminectomy in the nonhuman primate. Boden SD; Martin GJ; Morone MA; Ugbo JL; Moskovitz PA Spine (Phila Pa 1976); 1999 Jun; 24(12):1179-85. PubMed ID: 10382242 [TBL] [Abstract][Full Text] [Related]
12. Porous ceramics as bone graft substitutes in long bone defects: a biomechanical, histological, and radiographic analysis. Johnson KD; Frierson KE; Keller TS; Cook C; Scheinberg R; Zerwekh J; Meyers L; Sciadini MF J Orthop Res; 1996 May; 14(3):351-69. PubMed ID: 8676247 [TBL] [Abstract][Full Text] [Related]
13. [Lumbar interbody fusion using autologous bone marrow mesenchymal stem cell-calcium phosphate ceramic composite in rhesus monkey]. Wang T; Dang GT; Guo ZQ; Yang M; Li YM Zhonghua Wai Ke Za Zhi; 2006 Jun; 44(12):843-7. PubMed ID: 16889737 [TBL] [Abstract][Full Text] [Related]
14. Material-dependent bone induction by calcium phosphate ceramics: a 2.5-year study in dog. Yuan H; Yang Z; De Bruij JD; De Groot K; Zhang X Biomaterials; 2001 Oct; 22(19):2617-23. PubMed ID: 11519781 [TBL] [Abstract][Full Text] [Related]
15. [Effect of fibrin on osseointegration of bioactive glass-ceramic materials--experimental study]. Urban K; Povýsil C; Spelda S Acta Chir Orthop Traumatol Cech; 2001; 68(3):168-75. PubMed ID: 11706539 [TBL] [Abstract][Full Text] [Related]
16. Bone regeneration using beta-tricalcium phosphate in a calcium sulfate matrix. Podaropoulos L; Veis AA; Papadimitriou S; Alexandridis C; Kalyvas D J Oral Implantol; 2009; 35(1):28-36. PubMed ID: 19288885 [TBL] [Abstract][Full Text] [Related]
17. [Autogenous bone versus beta-tricalcium phosphate graft alone for bilateral sinus elevations (2-3D CT, histologic and histomorphometric evaluations)]. Németh Z; Suba Z; Hrabák K; Barabás J; Szabó G Orv Hetil; 2002 Jun; 143(25):1533-8. PubMed ID: 12577407 [TBL] [Abstract][Full Text] [Related]
18. Review paper: behavior of ceramic biomaterials derived from tricalcium phosphate in physiological condition. Kamitakahara M; Ohtsuki C; Miyazaki T J Biomater Appl; 2008 Nov; 23(3):197-212. PubMed ID: 18996965 [TBL] [Abstract][Full Text] [Related]
19. [Stimulating regeneration of bone defects by implantation of bioceramics and autologous osteoblast transplantation]. Henkel KO; Gerber T; Dörfling P; Härtel J; Jonas L; Gundlach KK; Bienengräber V Mund Kiefer Gesichtschir; 2002 Mar; 6(2):59-65. PubMed ID: 12017875 [TBL] [Abstract][Full Text] [Related]
20. Utilization of autogenous bone, bioactive glasses, and calcium phosphate cement in surgical mandibular bone defects in Cebus apella monkeys. Cancian DC; Hochuli-Vieira E; Marcantonio RA; Garcia Júnior IR Int J Oral Maxillofac Implants; 2004; 19(1):73-9. PubMed ID: 14982358 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]