These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 20422659)

  • 1. Type-IV pili spectroscopic markers: applications in the quantification of piliation levels in Moraxella bovis cells by a FT-IR ANN-based model.
    Bosch A; Prieto C; Serra DO; Martina P; Stämmbler M; Naumann D; Schmitt J; Yantorno O
    J Biophotonics; 2010 Aug; 3(8-9):522-33. PubMed ID: 20422659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vaccine against infectious bovine keratoconjunctivitis: a new approach to optimize the production of highly piliated Moraxella bovis cells.
    Prieto CI; Bosch A; Zielinski G; Cúneo J; Yantorno OM
    Vaccine; 2008 Dec; 26(51):6542-9. PubMed ID: 18852003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pathogenicity and immunogenicity of piliated and nonpiliated phases of Moraxella bovis in calves.
    Jayappa HG; Lehr C
    Am J Vet Res; 1986 Oct; 47(10):2217-21. PubMed ID: 2877604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Classification of select category A and B bacteria by Fourier transform infrared spectroscopy.
    Samuels AC; Snyder AP; Emge DK; Amant D; Minter J; Campbell M; Tripathi A
    Appl Spectrosc; 2009 Jan; 63(1):14-24. PubMed ID: 19146715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The protective efficacy of pili from different strains of Moraxella bovis within the same serogroup against infectious bovine keratoconjunctivitis.
    Lepper AW; Moore LJ; Atwell JL; Tennent JM
    Vet Microbiol; 1992 Sep; 32(2):177-87. PubMed ID: 1359693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Whole-bacterial cell enzyme-linked immunosorbent assay for cell-bound Moraxella bovis pili.
    Prieto CI; Rodriguez ME; Bosch A; Chirdo FG; Yantorno OM
    Vet Microbiol; 2003 Feb; 91(2-3):157-68. PubMed ID: 12458165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial neural network based identification of Campylobacter species by Fourier transform infrared spectroscopy.
    Mouwen DJ; Capita R; Alonso-Calleja C; Prieto-Gómez J; Prieto M
    J Microbiol Methods; 2006 Oct; 67(1):131-40. PubMed ID: 16632003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Species and strain identification of lactic acid bacteria using FTIR spectroscopy and artificial neural networks.
    Wenning M; Büchl NR; Scherer S
    J Biophotonics; 2010 Aug; 3(8-9):493-505. PubMed ID: 20422658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Q pili enhance the attachment of Moraxella bovis to bovine corneas in vitro.
    Ruehl WW; Marrs C; Beard MK; Shokooki V; Hinojoza JR; Banks S; Bieber D; Mattick JS
    Mol Microbiol; 1993 Jan; 7(2):285-8. PubMed ID: 8095318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adherence of Moraxella bovis to cell cultures of bovine origin.
    Annuar BO; Wilcox GE
    Res Vet Sci; 1985 Sep; 39(2):241-6. PubMed ID: 2866569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FT-IR microspectroscopy: a promising method for the rapid identification of Listeria species.
    Janbu AO; Møretrø T; Bertrand D; Kohler A
    FEMS Microbiol Lett; 2008 Jan; 278(2):164-70. PubMed ID: 18053065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Serologic cross-reactivity of Australian Moraxella bovis to vaccinal bacterin strains as determined by competitive ELISA.
    McConnel CS; Shum L; Gleeson BL; House JK
    Aust Vet J; 2008 Apr; 86(4):124-9. PubMed ID: 18363984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discrimination of enterobacterial repetitive intergenic consensus PCR types of Campylobacter coli and Campylobacter jejuni by Fourier transform infrared spectroscopy.
    Mouwen DJ; Weijtens MJ; Capita R; Alonso-Calleja C; Prieto M
    Appl Environ Microbiol; 2005 Aug; 71(8):4318-24. PubMed ID: 16085819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and quantification of industrial grade glycerol adulteration in red wine with fourier transform infrared spectroscopy using chemometrics and artificial neural networks.
    Dixit V; Tewari JC; Cho BK; Irudayaraj JM
    Appl Spectrosc; 2005 Dec; 59(12):1553-61. PubMed ID: 16390596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmid content of piliated and nonpiliated forms of Moraxella bovis.
    Wilt GR; Wu G; Bird RC; Toivio-Kinnucan M
    Am J Vet Res; 1990 Jan; 51(1):171-3. PubMed ID: 1967921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of diffuse-reflectance absorbance and attenuated total reflectance FT-IR for the discrimination of bacteria.
    Winder CL; Goodacre R
    Analyst; 2004 Nov; 129(11):1118-22. PubMed ID: 15508042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of shared magnetic antigenic determinants on whole Moraxella bovis pili by use of antisera to cyanogen bromide-cleaved M. bovis pilus protein.
    Greene WH; Grubbs ST; Potgieter LN
    Am J Vet Res; 2001 Aug; 62(8):1279-84. PubMed ID: 11497451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discriminating the intraerythrocytic lifecycle stages of the malaria parasite using synchrotron FT-IR microspectroscopy and an artificial neural network.
    Webster GT; de Villiers KA; Egan TJ; Deed S; Tilley L; Tobin MJ; Bambery KR; McNaughton D; Wood BR
    Anal Chem; 2009 Apr; 81(7):2516-24. PubMed ID: 19278236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fourier transform infrared (FT-IR) spectroscopy in bacteriology: towards a reference method for bacteria discrimination.
    Preisner O; Lopes JA; Guiomar R; Machado J; Menezes JC
    Anal Bioanal Chem; 2007 Mar; 387(5):1739-48. PubMed ID: 17086390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterisation and quantitation of pilus antigens of Moraxella bovis by ELISA.
    Lepper AW; Hermans LR
    Aust Vet J; 1986 Dec; 63(12):401-5. PubMed ID: 2879528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.