These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 20423065)
1. Reactivity of the insecticide fenitrothion toward O and N nucleophiles. Rougier NM; Vico RV; de Rossi RH; Buján EI J Org Chem; 2010 May; 75(10):3427-36. PubMed ID: 20423065 [TBL] [Abstract][Full Text] [Related]
2. Nucleophilic degradation of fenitrothion insecticide and performance of nucleophiles: a computational study. Mandal D; Mondal B; Das AK J Phys Chem A; 2012 Mar; 116(10):2536-46. PubMed ID: 22339374 [TBL] [Abstract][Full Text] [Related]
3. Effect of cyclodextrins on the reactivity of fenitrothion. Rougier NM; Cruickshank DL; Vico RV; Bourne SA; Caira MR; Buján EI; de Rossi RH Carbohydr Res; 2011 Feb; 346(2):322-7. PubMed ID: 21146810 [TBL] [Abstract][Full Text] [Related]
4. Stability studies of hydrazide and hydroxylamine-based glycoconjugates in aqueous solution. Gudmundsdottir AV; Paul CE; Nitz M Carbohydr Res; 2009 Feb; 344(3):278-84. PubMed ID: 19056080 [TBL] [Abstract][Full Text] [Related]
5. Degradation of the pesticide fenitrothion as mediated by cationic surfactants and alpha-nucleophilic reagents. Han X; Balakrishnan VK; VanLoon GW; Buncel E Langmuir; 2006 Oct; 22(21):9009-17. PubMed ID: 17014147 [TBL] [Abstract][Full Text] [Related]
6. Detailed spectroscopic, thermodynamic, and kinetic studies on the protolytic equilibria of Fe(III)cydta and the activation of hydrogen peroxide. Brausam A; Maigut J; Meier R; Szilágyi PA; Buschmann HJ; Massa W; Homonnay Z; van Eldik R Inorg Chem; 2009 Aug; 48(16):7864-84. PubMed ID: 19618946 [TBL] [Abstract][Full Text] [Related]
7. Reaction of bis(2,4-dinitrophenyl) phosphate with hydrazine and hydrogen peroxide. Comparison of O- and N- phosphorylation. Domingos JB; Longhinotti E; Brandão TA; Santos LS; Eberlin MN; Bunton CA; Nome F J Org Chem; 2004 Nov; 69(23):7898-905. PubMed ID: 15527267 [TBL] [Abstract][Full Text] [Related]
8. Solid-state structures and thermal properties of inclusion complexes of the organophosphate insecticide fenitrothion with permethylated cyclodextrins. Cruickshank D; Rougier NM; Vico RV; de Rossi RH; Buján EI; Bourne SA; Caira MR Carbohydr Res; 2010 Jan; 345(1):141-7. PubMed ID: 19922907 [TBL] [Abstract][Full Text] [Related]
9. Novel iron(III) porphyrazine complex. Complex speciation and reactions with NO and H2O2. Theodoridis A; Maigut J; Puchta R; Kudrik EV; van Eldik R Inorg Chem; 2008 Apr; 47(8):2994-3013. PubMed ID: 18351731 [TBL] [Abstract][Full Text] [Related]
10. Efficient intramolecular general acid catalysis of nucleophilic attack on a phosphodiester. Kirby AJ; Lima MF; da Silva D; Roussev CD; Nome F J Am Chem Soc; 2006 Dec; 128(51):16944-52. PubMed ID: 17177446 [TBL] [Abstract][Full Text] [Related]
11. Effect of heteroatom insertion at the side chain of 5-alkyl-1H-tetrazoles on their properties as catalysts for ester hydrolysis at neutral pH. Bhattacharya S; Vemula PK J Org Chem; 2005 Nov; 70(24):9677-85. PubMed ID: 16292794 [TBL] [Abstract][Full Text] [Related]
12. Further characterization of Mitsunobu-type intermediates in the reaction of dialkyl azodicarboxylates with P(III) compounds. Swamy KC; Kumar KP; Kumar NN J Org Chem; 2006 Feb; 71(3):1002-8. PubMed ID: 16438512 [TBL] [Abstract][Full Text] [Related]
13. Borate-catalyzed reactions of hydrogen peroxide: kinetics and mechanism of the oxidation of organic sulfides by peroxoborates. Davies DM; Deary ME; Quill K; Smith RA Chemistry; 2005 Jun; 11(12):3552-8. PubMed ID: 15827982 [TBL] [Abstract][Full Text] [Related]
14. Investigation of the radical product channel of the CH3COO2 + HO2 reaction in the gas phase. Jenkin ME; Hurley MD; Wallington TJ Phys Chem Chem Phys; 2007 Jun; 9(24):3149-62. PubMed ID: 17612738 [TBL] [Abstract][Full Text] [Related]
15. How constant are Ritchie's "constant selectivity relationships"? A general reactivity scale for n-, pi-, and sigma-nucleophiles. Minegishi S; Mayr H J Am Chem Soc; 2003 Jan; 125(1):286-95. PubMed ID: 12515531 [TBL] [Abstract][Full Text] [Related]
16. Nitrosation by peroxynitrite: use of phenol as a probe. Uppu RM; Lemercier JN; Squadrito GL; Zhang H; Bolzan RM; Pryor WA Arch Biochem Biophys; 1998 Oct; 358(1):1-16. PubMed ID: 9750159 [TBL] [Abstract][Full Text] [Related]
17. Investigating the α-effect in gas-phase S(N)2 reactions of microsolvated anions. Thomsen DL; Reece JN; Nichols CM; Hammerum S; Bierbaum VM J Am Chem Soc; 2013 Oct; 135(41):15508-14. PubMed ID: 24047410 [TBL] [Abstract][Full Text] [Related]
18. Effects on the reactivity by changing the electrophilic center from C==O to C==S: contrasting reactivity of hydroxide, p-chlorophenoxide, and butan-2,3-dione monoximate in DMSO/H2O mixtures. Um IH; Han JY; Buncel E Chemistry; 2009; 15(4):1011-7. PubMed ID: 19065694 [TBL] [Abstract][Full Text] [Related]
19. Diverse modes of reactivity of dialkyl azodicarboxylates with P(III) compounds: synthesis, structure, and reactivity of products other than the Morrison-Brunn-Huisgen intermediate in a Mitsunobu-type reaction. Satish Kumar N; Praveen Kumar K; Pavan Kumar KV; Kommana P; Vittal JJ; Kumara Swamy KC J Org Chem; 2004 Mar; 69(6):1880-9. PubMed ID: 15058933 [TBL] [Abstract][Full Text] [Related]
20. Can one predict changes from S(N)1 to S(N)2 mechanisms? Phan TB; Nolte C; Kobayashi S; Ofial AR; Mayr H J Am Chem Soc; 2009 Aug; 131(32):11392-401. PubMed ID: 19634906 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]