BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 20423073)

  • 1. Molecular dynamics study of a carbon nanotube binding reversible cyclic peptide.
    Chiu CC; Maher MC; Dieckmann GR; Nielsen SO
    ACS Nano; 2010 May; 4(5):2539-46. PubMed ID: 20423073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of alternating L-/D-amino acid chiralities and disulfide bond geometry on the capacity of cysteine-containing reversible cyclic peptides to disperse carbon nanotubes.
    Becraft EJ; Klimenko AS; Dieckmann GR
    Biopolymers; 2009; 92(3):212-21. PubMed ID: 19283829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of peptide--peptide interactions in stabilizing peptide-wrapped single-walled carbon nanotubes: a molecular dynamics study.
    Chiu CC; Dieckmann GR; Nielsen SO
    Biopolymers; 2009; 92(3):156-63. PubMed ID: 19226620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics study of a nanotube-binding amphiphilic helical peptide at different water/hydrophobic interfaces.
    Chiu CC; Dieckmann GR; Nielsen SO
    J Phys Chem B; 2008 Dec; 112(51):16326-33. PubMed ID: 19049390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of the bile salt surfactant sodium cholate in enhancing the aqueous dispersion stability of single-walled carbon nanotubes: a molecular dynamics simulation study.
    Lin S; Blankschtein D
    J Phys Chem B; 2010 Dec; 114(47):15616-25. PubMed ID: 21050001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomimetic chemosensor: designing peptide recognition elements for surface functionalization of carbon nanotube field effect transistors.
    Kuang Z; Kim SN; Crookes-Goodson WJ; Farmer BL; Naik RR
    ACS Nano; 2010 Jan; 4(1):452-8. PubMed ID: 20038158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aqueous dispersion, surface thiolation, and direct self-assembly of carbon nanotubes on gold.
    Kocharova N; AƤritalo T; Leiro J; Kankare J; Lukkari J
    Langmuir; 2007 Mar; 23(6):3363-71. PubMed ID: 17291020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diameter-selective solubilization of single-walled carbon nanotubes by reversible cyclic peptides.
    Ortiz-Acevedo A; Xie H; Zorbas V; Sampson WM; Dalton AB; Baughman RH; Draper RK; Musselman IH; Dieckmann GR
    J Am Chem Soc; 2005 Jul; 127(26):9512-7. PubMed ID: 15984878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of cosolvents on the hydration of carbon nanotubes.
    Yang L; Gao YQ
    J Am Chem Soc; 2010 Jan; 132(2):842-8. PubMed ID: 20030390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing diameter-selective solubilisation of carbon nanotubes by reversible cyclic peptides using molecular dynamics simulations.
    Friling SR; Notman R; Walsh TR
    Nanoscale; 2010 Jan; 2(1):98-106. PubMed ID: 20648370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solubilizing carbon nanotubes through noncovalent functionalization. Insight from the reversible wrapping of alginic acid around a single-walled carbon nanotube.
    Liu Y; Chipot C; Shao X; Cai W
    J Phys Chem B; 2010 May; 114(17):5783-9. PubMed ID: 20349928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation of adsorption of DNA on carbon nanotubes.
    Zhao X; Johnson JK
    J Am Chem Soc; 2007 Aug; 129(34):10438-45. PubMed ID: 17676840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stabilization of aqueous carbon nanotube dispersions using surfactants: insights from molecular dynamics simulations.
    Tummala NR; Morrow BH; Resasco DE; Striolo A
    ACS Nano; 2010 Dec; 4(12):7193-204. PubMed ID: 21128672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modification of single walled carbon nanotube surface chemistry to improve aqueous solubility and enhance cellular interactions.
    Crouzier T; Nimmagadda A; Nollert MU; McFetridge PS
    Langmuir; 2008 Nov; 24(22):13173-81. PubMed ID: 18947245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of electron-donating and electron-withdrawing groups on peptide/single-walled carbon nanotube interactions.
    Poenitzsch VZ; Winters DC; Xie H; Dieckmann GR; Dalton AB; Musselman IH
    J Am Chem Soc; 2007 Nov; 129(47):14724-32. PubMed ID: 17985894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coarse-grained molecular dynamics study of cyclic peptide nanotube insertion into a lipid bilayer.
    Hwang H
    J Phys Chem A; 2009 Apr; 113(16):4780-7. PubMed ID: 19035669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Importance of aromatic content for peptide/single-walled carbon nanotube interactions.
    Zorbas V; Smith AL; Xie H; Ortiz-Acevedo A; Dalton AB; Dieckmann GR; Draper RK; Baughman RH; Musselman IH
    J Am Chem Soc; 2005 Sep; 127(35):12323-8. PubMed ID: 16131210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photophysics of individual single-walled carbon nanotubes.
    Carlson LJ; Krauss TD
    Acc Chem Res; 2008 Feb; 41(2):235-43. PubMed ID: 18281946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics simulation for the structure of the water chain in a transmembrane peptide nanotube.
    Liu J; Fan J; Tang M; Zhou W
    J Phys Chem A; 2010 Feb; 114(6):2376-83. PubMed ID: 20099797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-walled carbon nanotubes under the influence of dynamic coordination and supramolecular chemistry.
    Chichak KS; Star A; AltoƩ MV; Stoddart JF
    Small; 2005 Apr; 1(4):452-61. PubMed ID: 17193471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.