These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
419 related articles for article (PubMed ID: 20423162)
1. Fully relativistic calculations of NMR shielding tensors using restricted magnetically balanced basis and gauge including atomic orbitals. Komorovský S; Repiský M; Malkina OL; Malkin VG J Chem Phys; 2010 Apr; 132(15):154101. PubMed ID: 20423162 [TBL] [Abstract][Full Text] [Related]
2. A fully relativistic method for calculation of nuclear magnetic shielding tensors with a restricted magnetically balanced basis in the framework of the matrix Dirac-Kohn-Sham equation. Komorovský S; Repiský M; Malkina OL; Malkin VG; Malkin Ondík I; Kaupp M J Chem Phys; 2008 Mar; 128(10):104101. PubMed ID: 18345871 [TBL] [Abstract][Full Text] [Related]
3. Four-component relativistic theory for nuclear magnetic shielding: magnetically balanced gauge-including atomic orbitals. Cheng L; Xiao Y; Liu W J Chem Phys; 2009 Dec; 131(24):244113. PubMed ID: 20059060 [TBL] [Abstract][Full Text] [Related]
4. A simple scheme for magnetic balance in four-component relativistic Kohn-Sham calculations of nuclear magnetic resonance shielding constants in a Gaussian basis. Olejniczak M; Bast R; Saue T; Pecul M J Chem Phys; 2012 Jan; 136(1):014108. PubMed ID: 22239770 [TBL] [Abstract][Full Text] [Related]
5. Gauge origin independent calculations of nuclear magnetic shieldings in relativistic four-component theory. Ilias M; Saue T; Enevoldsen T; Jensen HJ J Chem Phys; 2009 Sep; 131(12):124119. PubMed ID: 19791864 [TBL] [Abstract][Full Text] [Related]
12. Calculations of nuclear magnetic shielding constants based on the exact two-component relativistic method. Yoshizawa T; Hada M J Chem Phys; 2017 Oct; 147(15):154104. PubMed ID: 29055334 [TBL] [Abstract][Full Text] [Related]
13. Nuclear magnetic shielding constants of liquid water: insights from hybrid quantum mechanics/molecular mechanics models. Kongsted J; Nielsen CB; Mikkelsen KV; Christiansen O; Ruud K J Chem Phys; 2007 Jan; 126(3):034510. PubMed ID: 17249887 [TBL] [Abstract][Full Text] [Related]
14. Relativistic calculation of nuclear magnetic shielding tensor using the regular approximation to the normalized elimination of the small component. III. Introduction of gauge-including atomic orbitals and a finite-size nuclear model. Hamaya S; Maeda H; Funaki M; Fukui H J Chem Phys; 2008 Dec; 129(22):224103. PubMed ID: 19071903 [TBL] [Abstract][Full Text] [Related]
15. Nuclear magnetic resonance shielding constants and chemical shifts in linear 199Hg compounds: a comparison of three relativistic computational methods. Arcisauskaite V; Melo JI; Hemmingsen L; Sauer SP J Chem Phys; 2011 Jul; 135(4):044306. PubMed ID: 21806118 [TBL] [Abstract][Full Text] [Related]
17. Molecular orbital analysis of the inverse halogen dependence of nuclear magnetic shielding in LaX₃, X = F, Cl, Br, I. Moncho S; Autschbach J Magn Reson Chem; 2010 Dec; 48 Suppl 1():S76-85. PubMed ID: 20586110 [TBL] [Abstract][Full Text] [Related]
18. Gauge invariant calculations of nuclear magnetic shielding constants using the continuous transformation of the origin of the current density approach. II. Density functional and coupled cluster theory. Ligabue A; Sauer SP; Lazzeretti P J Chem Phys; 2007 Apr; 126(15):154111. PubMed ID: 17461618 [TBL] [Abstract][Full Text] [Related]
19. The four-component DFT method for the calculation of the EPR g-tensor using a restricted magnetically balanced basis and London atomic orbitals. Misenkova D; Lemken F; Repisky M; Noga J; Malkina OL; Komorovsky S J Chem Phys; 2022 Oct; 157(16):164114. PubMed ID: 36319402 [TBL] [Abstract][Full Text] [Related]
20. NMR shielding tensors for density fitted local second-order Møller-Plesset perturbation theory using gauge including atomic orbitals. Loibl S; Schütz M J Chem Phys; 2012 Aug; 137(8):084107. PubMed ID: 22938218 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]