These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 20423194)

  • 1. Modeling of colloid agglomeration inhibition inside a slitlike pore.
    Barcenas M; Douda J; Duda Y; Orea P
    J Chem Phys; 2010 Apr; 132(15):154703. PubMed ID: 20423194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monte Carlo simulation of colloidal membrane filtration: principal issues for modeling.
    Chen JC; Kim AS
    Adv Colloid Interface Sci; 2006 Jan; 119(1):35-53. PubMed ID: 16307713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature dependence of the colloidal agglomeration inhibition: computer simulation study.
    Barcenas M; Douda J; Duda Y
    J Chem Phys; 2007 Sep; 127(11):114706. PubMed ID: 17887869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aggregation-fragmentation in a model of DNA-mediated colloidal assembly.
    Pierce F; Sorensen CM; Chakrabarti A
    Langmuir; 2005 Sep; 21(20):8992-9. PubMed ID: 16171321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An aggregation-volume-bias Monte Carlo investigation on the condensation of a Lennard-Jones vapor below the triple point and crystal nucleation in cluster systems: an in-depth evaluation of the classical nucleation theory.
    Chen B; Kim H; Keasler SJ; Nellas RB
    J Phys Chem B; 2008 Apr; 112(13):4067-78. PubMed ID: 18335920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Closure-based density functional theory applied to interfacial colloidal fluids.
    Lu M; Bevan MA; Ford DM
    Langmuir; 2007 Dec; 23(25):12481-8. PubMed ID: 17973405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scattering properties of dense clusters of colloidal nanoparticles.
    Lattuada M; Ehrl L
    J Phys Chem B; 2009 Apr; 113(17):5938-50. PubMed ID: 19341247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional off-lattice Monte Carlo simulations on a direct relation between experimental process parameters and fractal dimension of colloidal aggregates.
    Kim S; Lee KS; Zachariah MR; Lee D
    J Colloid Interface Sci; 2010 Apr; 344(2):353-61. PubMed ID: 20132942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational analysis of binary segregation during colloidal crystallization with DNA-mediated interactions.
    Scarlett RT; Crocker JC; Sinno T
    J Chem Phys; 2010 Jun; 132(23):234705. PubMed ID: 20572732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Donnan potential of dilute colloidal dispersions: Monte Carlo simulations.
    Wang TY; Sheng YJ; Tsao HK
    J Colloid Interface Sci; 2009 Dec; 340(2):192-201. PubMed ID: 19800074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diffusion in three-dimensionally ordered scaffolds with inverted colloidal crystal geometry.
    Shanbhag S; Woo Lee J; Kotov N
    Biomaterials; 2005 Sep; 26(27):5581-5. PubMed ID: 15860215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monte Carlo simulations of fluids whose particles interact with a logarithmic potential.
    Heyes DM; Rickayzen G; Powles JG
    J Chem Phys; 2008 Apr; 128(13):134503. PubMed ID: 18397073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of confinement on the electrostatic interaction between charged colloids: a (N,V,T) Monte Carlo study within hyperspherical geometry.
    Delville A
    J Phys Chem B; 2005 Apr; 109(16):8164-70. PubMed ID: 16851954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic Monte Carlo versus Brownian dynamics: A comparison for self-diffusion and crystallization in colloidal fluids.
    Sanz E; Marenduzzo D
    J Chem Phys; 2010 May; 132(19):194102. PubMed ID: 20499946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Percolation and jamming in structures built through sequential deposition of particles.
    Danwanichakul P; Glandt ED
    J Colloid Interface Sci; 2005 Mar; 283(1):41-8. PubMed ID: 15694422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Colloid dispersion on the pore scale.
    Baumann T; Toops L; Niessner R
    Water Res; 2010 Feb; 44(4):1246-54. PubMed ID: 20042215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of the extended RSA models in studies of particle deposition at partially covered surfaces.
    WeroĊ„ski P
    Adv Colloid Interface Sci; 2005 Dec; 118(1-3):1-24. PubMed ID: 16084783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of low flow and backward flow zones on colloid transport in pore structures derived from real porous media.
    Li X; Li Z; Zhang D
    Environ Sci Technol; 2010 Jul; 44(13):4936-42. PubMed ID: 20540578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Model simulations of particle aggregation effect on colloid exchange between streams and streambeds.
    Areepitak T; Ren J
    Environ Sci Technol; 2011 Jul; 45(13):5614-21. PubMed ID: 21627165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-dimensional Monte Carlo simulations of a colloidal dispersion composed of polydisperse ferromagnetic particles in an applied magnetic field.
    Aoshima M; Satoh A
    J Colloid Interface Sci; 2005 Aug; 288(2):475-88. PubMed ID: 15927615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.