These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
381 related articles for article (PubMed ID: 20423306)
1. Impact on DNA methylation in cancer prevention and therapy by bioactive dietary components. Li Y; Tollefsbol TO Curr Med Chem; 2010; 17(20):2141-51. PubMed ID: 20423306 [TBL] [Abstract][Full Text] [Related]
2. Dietary polyphenols may affect DNA methylation. Fang M; Chen D; Yang CS J Nutr; 2007 Jan; 137(1 Suppl):223S-228S. PubMed ID: 17182830 [TBL] [Abstract][Full Text] [Related]
3. Tea polyphenol (-)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Fang MZ; Wang Y; Ai N; Hou Z; Sun Y; Lu H; Welsh W; Yang CS Cancer Res; 2003 Nov; 63(22):7563-70. PubMed ID: 14633667 [TBL] [Abstract][Full Text] [Related]
4. Epigenetic events associated with breast cancer and their prevention by dietary components targeting the epigenome. Khan SI; Aumsuwan P; Khan IA; Walker LA; Dasmahapatra AK Chem Res Toxicol; 2012 Jan; 25(1):61-73. PubMed ID: 21992498 [TBL] [Abstract][Full Text] [Related]
5. Epigenetic diet: impact on the epigenome and cancer. Hardy TM; Tollefsbol TO Epigenomics; 2011 Aug; 3(4):503-18. PubMed ID: 22022340 [TBL] [Abstract][Full Text] [Related]
6. (-)-Epigallocatechin-3-gallate reactivates silenced tumor suppressor genes, Cip1/p21 and p16INK4a, by reducing DNA methylation and increasing histones acetylation in human skin cancer cells. Nandakumar V; Vaid M; Katiyar SK Carcinogenesis; 2011 Apr; 32(4):537-44. PubMed ID: 21209038 [TBL] [Abstract][Full Text] [Related]
7. (-)-Epigallocatechin-3-gallate reverses the expression of various tumor-suppressor genes by inhibiting DNA methyltransferases and histone deacetylases in human cervical cancer cells. Khan MA; Hussain A; Sundaram MK; Alalami U; Gunasekera D; Ramesh L; Hamza A; Quraishi U Oncol Rep; 2015 Apr; 33(4):1976-84. PubMed ID: 25682960 [TBL] [Abstract][Full Text] [Related]
8. Reversal of hypermethylation and reactivation of p16INK4a, RARbeta, and MGMT genes by genistein and other isoflavones from soy. Fang MZ; Chen D; Sun Y; Jin Z; Christman JK; Yang CS Clin Cancer Res; 2005 Oct; 11(19 Pt 1):7033-41. PubMed ID: 16203797 [TBL] [Abstract][Full Text] [Related]
9. The Inhibitory Effect of (-)-Epigallocatechin-3-Gallate on Breast Cancer Progression via Reducing Sheng J; Shi W; Guo H; Long W; Wang Y; Qi J; Liu J; Xu Y Molecules; 2019 Aug; 24(16):. PubMed ID: 31404982 [TBL] [Abstract][Full Text] [Related]
10. Novel Clofarabine-Based Combinations with Polyphenols Epigenetically Reactivate Retinoic Acid Receptor Beta, Inhibit Cell Growth, and Induce Apoptosis of Breast Cancer Cells. Lubecka K; Kaufman-Szymczyk A; Cebula-Obrzut B; Smolewski P; Szemraj J; Fabianowska-Majewska K Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30544666 [TBL] [Abstract][Full Text] [Related]
11. The green tea polyphenol EGCG alleviates maternal diabetes-induced neural tube defects by inhibiting DNA hypermethylation. Zhong J; Xu C; Reece EA; Yang P Am J Obstet Gynecol; 2016 Sep; 215(3):368.e1-368.e10. PubMed ID: 26979632 [TBL] [Abstract][Full Text] [Related]
12. DNA methyltransferase-1 inhibitors as epigenetic therapy for cancer. Singh V; Sharma P; Capalash N Curr Cancer Drug Targets; 2013 May; 13(4):379-99. PubMed ID: 23517596 [TBL] [Abstract][Full Text] [Related]
14. Colorectal cancer cells Caco-2 and HCT116 resist epigenetic effects of isothiocyanates and selenium in vitro. Barrera LN; Johnson IT; Bao Y; Cassidy A; Belshaw NJ Eur J Nutr; 2013 Jun; 52(4):1327-41. PubMed ID: 22923034 [TBL] [Abstract][Full Text] [Related]
15. Combinatorial epigenetic mechanisms and efficacy of early breast cancer inhibition by nutritive botanicals. Li Y; Buckhaults P; Cui X; Tollefsbol TO Epigenomics; 2016 Aug; 8(8):1019-37. PubMed ID: 27478970 [TBL] [Abstract][Full Text] [Related]
16. NNK-induced DNA methyltransferase 1 in lung tumorigenesis in A/J mice and inhibitory effects of (-)-epigallocatechin-3-gallate. Jin H; Chen JX; Wang H; Lu G; Liu A; Li G; Tu S; Lin Y; Yang CS Nutr Cancer; 2015; 67(1):167-76. PubMed ID: 25437343 [TBL] [Abstract][Full Text] [Related]
17. Mechanisms for the inhibition of DNA methyltransferases by tea catechins and bioflavonoids. Lee WJ; Shim JY; Zhu BT Mol Pharmacol; 2005 Oct; 68(4):1018-30. PubMed ID: 16037419 [TBL] [Abstract][Full Text] [Related]
18. Targeting the epigenome with bioactive food components for cancer prevention. Ong TP; Moreno FS; Ross SA J Nutrigenet Nutrigenomics; 2011; 4(5):275-92. PubMed ID: 22353664 [TBL] [Abstract][Full Text] [Related]
19. Genistein, an epigenome modifier during cancer prevention. Zhang Y; Chen H Epigenetics; 2011 Jul; 6(7):888-91. PubMed ID: 21610327 [TBL] [Abstract][Full Text] [Related]
20. Cell signaling and regulators of cell cycle as molecular targets for prostate cancer prevention by dietary agents. Agarwal R Biochem Pharmacol; 2000 Oct; 60(8):1051-9. PubMed ID: 11007941 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]