BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 20423905)

  • 1. Origin and evolution of peptide-modifying dioxygenases and identification of the wybutosine hydroxylase/hydroperoxidase.
    Iyer LM; Abhiman S; de Souza RF; Aravind L
    Nucleic Acids Res; 2010 Sep; 38(16):5261-79. PubMed ID: 20423905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of a novel JmjC-domain-containing protein, TYW5, involved in tRNA modification.
    Kato M; Araiso Y; Noma A; Nagao A; Suzuki T; Ishitani R; Nureki O
    Nucleic Acids Res; 2011 Mar; 39(4):1576-85. PubMed ID: 20972222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids.
    Iyer LM; Tahiliani M; Rao A; Aravind L
    Cell Cycle; 2009 Jun; 8(11):1698-710. PubMed ID: 19411852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distribution and prediction of catalytic domains in 2-oxoglutarate dependent dioxygenases.
    Kundu S
    BMC Res Notes; 2012 Aug; 5():410. PubMed ID: 22862831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diversification of catalytic activities and ligand interactions in the protein fold shared by the sugar isomerases, eIF2B, DeoR transcription factors, acyl-CoA transferases and methenyltetrahydrofolate synthetase.
    Anantharaman V; Aravind L
    J Mol Biol; 2006 Feb; 356(3):823-42. PubMed ID: 16376935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of PnpCD, a two-subunit hydroquinone 1,2-dioxygenase, reveals a novel structural class of Fe2+-dependent dioxygenases.
    Liu S; Su T; Zhang C; Zhang WM; Zhu D; Su J; Wei T; Wang K; Huang Y; Guo L; Xu S; Zhou NY; Gu L
    J Biol Chem; 2015 Oct; 290(40):24547-60. PubMed ID: 26304122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of 5-hydroxyectoine from ectoine: crystal structure of the non-heme iron(II) and 2-oxoglutarate-dependent dioxygenase EctD.
    Reuter K; Pittelkow M; Bursy J; Heine A; Craan T; Bremer E
    PLoS One; 2010 May; 5(5):e10647. PubMed ID: 20498719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Natural history of eukaryotic DNA methylation systems.
    Iyer LM; Abhiman S; Aravind L
    Prog Mol Biol Transl Sci; 2011; 101():25-104. PubMed ID: 21507349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein Hydroxylation Catalyzed by 2-Oxoglutarate-dependent Oxygenases.
    Markolovic S; Wilkins SE; Schofield CJ
    J Biol Chem; 2015 Aug; 290(34):20712-20722. PubMed ID: 26152730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of strictly conserved histidine and arginine residues as part of the active site in Petunia hybrida flavanone 3beta-hydroxylase.
    Lukacin R; Britsch L
    Eur J Biochem; 1997 Nov; 249(3):748-57. PubMed ID: 9395322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The DNA-repair protein AlkB, EGL-9, and leprecan define new families of 2-oxoglutarate- and iron-dependent dioxygenases.
    Aravind L; Koonin EV
    Genome Biol; 2001; 2(3):RESEARCH0007. PubMed ID: 11276424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacterial 2,4-dioxygenases: new members of the alpha/beta hydrolase-fold superfamily of enzymes functionally related to serine hydrolases.
    Fischer F; Künne S; Fetzner S
    J Bacteriol; 1999 Sep; 181(18):5725-33. PubMed ID: 10482514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 2-oxoglutarate-dependent dioxygenase and related enzymes: biochemical characterization.
    De Carolis E; De Luca V
    Phytochemistry; 1994 Jul; 36(5):1093-107. PubMed ID: 7765359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of the ectoine hydroxylase, a snapshot of the active site.
    Höppner A; Widderich N; Lenders M; Bremer E; Smits SH
    J Biol Chem; 2014 Oct; 289(43):29570-83. PubMed ID: 25172507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular cloning and characterization of desacetoxyvindoline-4-hydroxylase, a 2-oxoglutarate dependent-dioxygenase involved in the biosynthesis of vindoline in Catharanthus roseus (L.) G. Don.
    Vazquez-Flota F; De Carolis E; Alarco AM; De Luca V
    Plant Mol Biol; 1997 Aug; 34(6):935-48. PubMed ID: 9290645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Salicylate 1,2-dioxygenase from Pseudaminobacter salicylatoxidans: crystal structure of a peculiar ring-cleaving dioxygenase.
    Matera I; Ferraroni M; Bürger S; Scozzafava A; Stolz A; Briganti F
    J Mol Biol; 2008 Jul; 380(5):856-68. PubMed ID: 18572191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemical and Structural Insights into an Fe(II)/α-Ketoglutarate/O
    Joo SH; Pemble CW; Yang EG; Raetz CRH; Chung HS
    J Mol Biol; 2018 Oct; 430(21):4036-4048. PubMed ID: 30092253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Function of different amino acid residues in the reaction mechanism of gentisate 1,2-dioxygenases deduced from the analysis of mutants of the salicylate 1,2-dioxygenase from Pseudaminobacter salicylatoxidans.
    Eppinger E; Ferraroni M; Bürger S; Steimer L; Peng G; Briganti F; Stolz A
    Biochim Biophys Acta; 2015 Oct; 1854(10 Pt A):1425-37. PubMed ID: 26093111
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolutionary connection between the catalytic subunits of DNA-dependent RNA polymerases and eukaryotic RNA-dependent RNA polymerases and the origin of RNA polymerases.
    Iyer LM; Koonin EV; Aravind L
    BMC Struct Biol; 2003 Jan; 3():1. PubMed ID: 12553882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Site-directed mutagenesis of the active site serine290 in flavanone 3beta-hydroxylase from Petunia hybrida.
    Lukacin R; Gröning I; Pieper U; Matern U
    Eur J Biochem; 2000 Feb; 267(3):853-60. PubMed ID: 10651823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.