These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 20424789)

  • 21. [Energy transfer in photosynthetic units (author's transl)].
    Frackowiak D; Fiksiński K
    Postepy Biochem; 1976; 22(4):439-65. PubMed ID: 189294
    [No Abstract]   [Full Text] [Related]  

  • 22. Time-resolved methods in biophysics. 4. Broadband pump-probe spectroscopy system with sub-20 fs temporal resolution for the study of energy transfer processes in photosynthesis.
    Cerullo G; Manzoni C; Lüer L; Polli D
    Photochem Photobiol Sci; 2007 Feb; 6(2):135-44. PubMed ID: 17277836
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional architecture of the major light-harvesting complex from higher plants.
    Formaggio E; Cinque G; Bassi R
    J Mol Biol; 2001 Dec; 314(5):1157-66. PubMed ID: 11743731
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Energetics and kinetics of primary charge separation in bacterial photosynthesis.
    LeBard DN; Kapko V; Matyushov DV
    J Phys Chem B; 2008 Aug; 112(33):10322-42. PubMed ID: 18636767
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Properties and organisation of photosynthetic pigments.
    Barber J
    Symp Soc Exp Biol; 1983; 36():19-52. PubMed ID: 6399781
    [No Abstract]   [Full Text] [Related]  

  • 26. Primary photophysical processes in photosystem II: bridging the gap between crystal structure and optical spectra.
    Renger T; Schlodder E
    Chemphyschem; 2010 Apr; 11(6):1141-53. PubMed ID: 20394099
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spectroscopic investigation on the energy transfer process in photosynthetic apparatus of cyanobacteria.
    Li Y; Wang B; Ai XC; Zhang XK; Zhao JQ; Jiang LJ
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Jun; 60(7):1543-7. PubMed ID: 15147696
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Migration of electron excitation energy in mixed associates of chlorophyll and its derivatives].
    Zen'kevich EI; Losev AP; Gurinovich GP
    Mol Biol (Mosk); 1975; 9(4):516-23. PubMed ID: 1214795
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comments on the through-space singlet energy transfers and energy migration (exciton) in the light harvesting systems.
    Harvey PD; Stern C; Gros CP; Guilard R
    J Inorg Biochem; 2008 Mar; 102(3):395-405. PubMed ID: 18160130
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stereochemical determination of chlorophyll-d molecule from Acaryochloris marina and its modification to a self-aggregative chlorophyll as a model of green photosynthetic bacterial antennae.
    Mizoguchi T; Shoji A; Kunieda M; Miyashita H; Tsuchiya T; Mimuro M; Tamiaki H
    Photochem Photobiol Sci; 2006 Mar; 5(3):291-9. PubMed ID: 16520864
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Demetalation of chlorophyll pigments.
    Saga Y; Tamiaki H
    Chem Biodivers; 2012 Sep; 9(9):1659-83. PubMed ID: 22976960
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transition dipole moments of the Qy band in photosynthetic pigments.
    Oviedo MB; Sánchez CG
    J Phys Chem A; 2011 Nov; 115(44):12280-5. PubMed ID: 21970462
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inelastic neutron scattering study of light-induced dynamics of a photosynthetic membrane system.
    Furrer A; Stöckli A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011901. PubMed ID: 20365393
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Controlling Photosynthetic Excitons by Selective Pigment Photooxidation.
    Leiger K; Linnanto JM; Rätsep M; Timpmann K; Ashikhmin AA; Moskalenko AA; Fufina TY; Gabdulkhakov AG; Freiberg A
    J Phys Chem B; 2019 Jan; 123(1):29-38. PubMed ID: 30543422
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Theoretical description of protein field effects on electronic excitations of biological chromophores.
    Varsano D; Caprasecca S; Coccia E
    J Phys Condens Matter; 2017 Jan; 29(1):013002. PubMed ID: 27830666
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A red-shifted chlorophyll.
    Chen M; Schliep M; Willows RD; Cai ZL; Neilan BA; Scheer H
    Science; 2010 Sep; 329(5997):1318-9. PubMed ID: 20724585
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A quantum chemical study on the effects of varying the central metal in extended photosynthetic pigments.
    Komatsu Y; Takizawa K
    Phys Chem Chem Phys; 2021 Jul; 23(26):14404-14414. PubMed ID: 34180470
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The role of axial ligands for the structure and function of chlorophylls.
    Heimdal J; Jensen KP; Devarajan A; Ryde U
    J Biol Inorg Chem; 2007 Jan; 12(1):49-61. PubMed ID: 16953415
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evolution of chlorophyll and bacteriochlorophyll: the problem of invariant sites in sequence analysis.
    Lockhart PJ; Larkum AW; Steel M; Waddell PJ; Penny D
    Proc Natl Acad Sci U S A; 1996 Mar; 93(5):1930-4. PubMed ID: 8700861
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Significance of the excitonic intensity borrowing in the J-/H-aggregates of bacteriochlorophylls/chlorophylls.
    Gülen D
    Photosynth Res; 2006 Feb; 87(2):205-14. PubMed ID: 16437184
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.